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Abstract

During adolescence, the integration of specialized functional brain networks related to cog-

nitive control continues to increase. Slow frequency oscillations (4–10 Hz) have been shown

to support cognitive control processes, especially within prefrontal regions. However, it is

unclear how neural oscillations contribute to functional brain network development and

improvements in cognitive control during adolescence. To bridge this gap, we employed

magnetoencephalography (MEG) to explore changes in oscillatory power and phase cou-

pling across cortical networks in a sample of 68 adolescents and young adults. We found a

redistribution of power from lower to higher frequencies throughout adolescence, such that

delta band (1–3 Hz) power decreased, whereas beta band power (14–16 and 22–26 Hz)

increased. Delta band power decreased with age most strongly in association networks

within the frontal lobe and operculum. Conversely, beta band power increased throughout

development, most strongly in processing networks and the posterior cingulate cortex, a

hub of the default mode (DM) network. In terms of phase, theta band (5–9 Hz) phase-locking

robustly decreased with development, following an anterior-to-posterior gradient, with the

greatest decoupling occurring between association networks. Additionally, decreased slow

frequency phase-locking between frontolimbic regions was related to decreased impulsivity

with age. Thus, greater decoupling of slow frequency oscillations may afford functional net-

works greater flexibility during the resting state to instantiate control when required.

Author summary

During the transition from adolescence to adulthood, humans have decreases in impulsiv-

ity and increases in cognitive control. These behaviors are supported by a distributed set
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of brain regions, including the prefrontal cortex, that can be studied by with a variety of

brain-imaging tools. Magnetoencephalography (MEG) is an approach that allows us to

study spontaneous brain activity at the millisecond timescale, providing unique insight

into local neural activity (power) and interactions between brain regions (estimated

through phase-locking). Neural circuits exhibit oscillatory activity across a broad range of

frequencies. Relatively slower-frequency (4–10 Hz) oscillations are thought to support

cognitive control. We found that, during the transition from adolescence to adulthood,

power was redistributed from slower frequencies to higher frequencies, with the greatest

increase in faster frequency power in the posterior cingulate cortex. We also found that

the phase-locking of prefrontal cortex theta band (5–9 Hz) oscillations decreases during

adolescence. Mediation analysis of self-reported impulsive behavior suggests that band

phase-locking contributes to decreases in impulsivity. This activity pattern may be an

intrinsic marker for the ability for control-related brain regions to engage downstream

processing networks. Our results indicate that spontaneous neural activity continues to be

refined systematically during adolescence and contributes to cognitive maturation.

Introduction

The transition from adolescence to adulthood is characterized by significant enhancements in

brain function, supporting increased cognitive control and normative decreases in impulsivity

[1,2]. Developmental task-based functional magnetic resonance imaging (fMRI) studies indi-

cate that core regions supporting cognitive control (e.g., anterior cingulate cortex [ACC] and

anterior insula [aIns]) are engaged in adolescence during cognitive tasks, but their blood oxy-

gen level–dependent (BOLD) signal activation [3,4] and connectivity with other brain regions

continue to increase into adulthood [5–7]. As such, brain networks supporting cognitive con-

trol are present prior to adolescence; however, the successful instantiation of cognitive control

continues to improve [8]. Developmental resting-state fMRI (rs-fMRI) studies analyzing

whole-brain connectivity patterns parallel this principle, such that the organization of func-

tional brain networks is relatively stable by childhood [7,9,10], while integration (between-net-

work functional connectivity) continues to refine well into late adolescence and early

adulthood, supporting improvements in cognitive control [7].

The majority of developmental research on resting-state functional networks has utilized

fMRI (see [11] for a review), providing the field a window into the development of resting-

state networks at infra-slow frequencies (0.01–0.10 Hz). However, much less is known about

the development of these networks at faster frequencies (i.e., 1–10 Hz oscillations) known to

support the cognitive constructs that demonstrate a protracted development [12]. Because

fMRI is not sensitive to this timescale of oscillation, magnetoencephalography (MEG) serves

as a complementary tool to understand resting-state network development by allowing us to

explore this relatively faster oscillatory range.

The correlation between electrophysiology and BOLD has been studied in both human and

nonhuman primates, with a consistent finding of correlations between modalities in broad-

band gamma activity (40–100 Hz) within local neuronal pools during tasks [13,14]. Oscilla-

tions in this frequency range play a role in enabling local neuronal synchronization, whereas

slower frequency (4–14 Hz) oscillations have been shown to support long-distance integration

[15,16]. For example, synchronization of slow frequency oscillations within the frontoparietal

(FP) network [17] are associated with cognitive control and have been shown to improve

behavioral performance on control tasks [18,19]. Additionally, theta band activity (4–10 Hz)
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intensifies when control demands are increased [20]. Hence, slow frequency oscillations across

control regions may contribute to top-down modulation of processing networks [12,21,22].

For example, long-range interactions from frontal to visual association regions during working

memory retention and mental imagery evolved most strongly in the theta and alpha frequency

range [23,24]. Moreover, evidence suggests that the prefrontal cortex leads the posterior parie-

tal cortex in sustained visual attention tasks in the theta band [25]. Slower frequency oscilla-

tions, often in the theta band, have been shown to organize local neural activity in the gamma

band, such that neurons tend to have greater firing rates in the trough of an ongoing slow fre-

quency oscillation, providing a temporal template for neuronal communication [22,26]. As

such, the phase of slower frequency oscillations, especially within the theta band, may be criti-

cal for coordination of neural activity over long distances [22,27].

In addition to task states, the electrophysiological correlates of control networks defined by

BOLD fMRI during the resting state are becoming clearer. Resting-state BOLD networks cor-

relate to the alpha and beta band, as measured with MEG [28]. There is additional evidence

suggesting that correlations with BOLD may be greater at even slower frequencies, such as

delta and theta bands (1–10 Hz) [29]. Recently, Hacker and colleagues characterized the spatial

correspondence in humans of resting-state BOLD fMRI and band-limited power using elec-

trocorticographic recordings, discovering frequency-specific oscillations within association

networks in the slow frequency range (3–14 Hz) [30]. In sum, association networks map onto

slower frequency oscillations (4–14 Hz) that may support coordinating activity of other brain

networks.

Electrophysiological (i.e., electroencephalography [EEG]/MEG) studies have begun to offer

insight into development changes in cortical oscillations. The majority of research concerning

electrophysiological maturation across development has used EEG, finding age-related

decreases in total power (total amount of activity across broadband frequencies) [31] and abso-

lute power in each frequency band [31–34]. Additional work has shown that there is a redistri-

bution of relative power (power in a given band in relation to total power across all

frequencies) from lower to higher frequency bands [35], with frontal regions reaching adult

levels of power after more posterior processing regions [31,32,36]. Similar posterior-to-ante-

rior gradients have been observed using EEG measures of coherence, an index of regional cou-

pling including both phase and amplitude components [37]. Notably, the curvilinear decreases

in the delta and theta bands (i.e., 0.5–7 Hz) are highly correlated with gray matter volume

decreases during adolescence [38]. Using MEG, increased amplitude correlations have been

observed both within and between functional brain networks at rest throughout adolescence

[39]. Although these studies have begun highlighting developmental trajectories of neural

oscillations, the poor spatial specificity of EEG and lack of brain/behavior relationships utiliz-

ing MEG/EEG have limited our understanding of the regional and functional network devel-

opment of oscillations and their potential contribution to cognitive development.

We sought to bridge this gap in the understanding of adolescent development, linking the

age-related changes in brain network oscillations to cognitive development. In a sample of 68

adolescents and young adults (aged 14–31 years), we employed MEG to explore intrinsic prop-

erties related to oscillatory developmental within and between cortical networks, with regard

to both power and phase. Specifically, within frequency intervals related to interareal neural

interactions (1–49 Hz) [40,41], we examined regional and network-level oscillatory power and

functional coupling of well-defined brain networks using the phase-locking value (PLV), simi-

lar to recent approaches [42]. Unlike correlation or coherence measures, the PLV ignores the

amplitude (power) relationship between 2 oscillators. This enhances the ability to analyze

phase relationships between brain regions, which is known to support interareal communica-

tion between large neuronal pools [26]. Interareal phase relationships in the theta band
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increase across multiple components of cognitive control [12], including working memory

[43], error commission [44], and conflict.

Similar to previous EEG studies, we found a redistribution of regional power from slower

delta band oscillations to faster beta band oscillations, with greater decreases in delta band

power anteriorly in the cortex and greater increases in beta band power posteriorly. In terms

of phase, we demonstrate age-related decreases in phase-locking of slow frequency (5–9 Hz)

oscillations during adolescence, which followed a robust anterior-to-posterior gradient, with

the greatest age-related changes in midline frontal regions, an area known have protracted

cognitive development throughout adolescence [1,3,7]. Using a priori network membership,

we show that the greatest developmental slow frequency decoupling occurred in higher-order

association networks, relative to processing networks. Finally, we demonstrate that decoupling

of slow frequency oscillations between anterior prefrontal regions and the anterior temporal

lobe is related to self-reported impulsivity, a developmentally sensitive measure of cognitive

control known to decrease robustly throughout adolescence.

Results

Developmental differences in global cortical phase-locking and power

In order to probe developmental changes in functional brain regions and networks, we used a

previously defined functional parcellation established from rs-fMRI [45] to parcellate the corti-

cal surface into 333 regions of interest (ROIs) in a sample of 68 individuals aged 14 to 31 years.

For each ROI at each frequency (1–49 Hz; 1 Hz intervals), we calculated relative power to

probe regional age-related changes in regional power and a PLV between each ROI pair to

determine the age-related differences in degree of coupling between the phases of the oscilla-

tions between regions (see Fig 1 for workflow overview).

First, we averaged the PLV matrices at each frequency across both ROI dimensions for each

frequency and subject. This resulted in one global cortical PLV for each frequency, for each

subject. There was no significant main effect of age predicting PLV (β = −0.0004, t = −1.255,

χ2(1) = 1.576, p = 0.209). However, there was a significant age by frequency interaction pre-

dicting PLV (χ2[48] = 125.56, p< 0.001). A significant negative relationship between global

PLV and age at each frequency interval between 5 and 9 Hz (all p< 0.05, false discovery rate

[FDR] corrected) emerged, suggesting that phase relationships between regions in the 5–9 Hz

frequency band become less coupled throughout adolescence (Fig 2A). No other frequency

intervals showed a significant age-related change in PLV (all p> 0.05).

Similar to the PLV analysis, for each subject, we computed relative power at each frequency

(1–49 Hz in 1 Hz intervals) for each ROI (see Methods for details). Similar to the PLV analysis,

we obtained a measure of global power by averaging relative power across each ROI for each

frequency. We observed a significant negative relationship between delta band power (1–3 Hz)

and age (all p< 0.05, FDR corrected), such that delta band power decreased with age (Fig 2B).

Conversely, beta band power (14–16 Hz and 22–26 Hz) significantly increased with age (all

p< 0.05, FDR corrected), supporting previous developmental EEG studies noting a shift in

power distribution, such that slower wave oscillations tend to shift towards relatively higher

frequencies at rest [31,32,36]. There was no evidence for a significant relationship between 5–9

Hz power and age (t = −0.36, p = 0.71). Moreover, we did not observe a significant relationship

between PLV and power (t = −0.01, p = 0.99). These results further support the notion that

phase and power are largely orthogonal, providing complementary information in regard to

the development of neural oscillations.

Oscillatory contributions to cognitive development
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Fig 1. Workflow diagram. Preprocessing: Raw MEG and structural MRI data were preprocessed and coregistered. After

surface ROI time series were extracted, a PLV was calculated for each frequency in the interval from 1–49 Hz, resulting

in an ROI × ROI PLV matrix at each frequency interval for each subject. Global PLV: For each frequency, the mean PLV

between all ROI pairs was calculated for each subject. Subject age was then regressed onto this global mean at each

frequency to test for significant age effects, controlling for power. Regional PLV: Slow frequency (5–9 Hz) PLV matrices

were averaged for each subject. Age was then regressed onto PLV for each edge of the matrix. The beta weight associated

with age for every edge was extracted from each regression model. To summarize regional changes, we summed down

the columns of the matrix, resulting in a composite linear age effect for each ROI. Global/regional power: Similar to the

PLV pipeline, we calculated relative power for each ROI at each frequency interval. To obtain a global measure of power,

we averaged power across all ROIs within a frequency band. For each region, we regressed power at a given frequency

interval onto age and extracted the beta weight from the age regressor for additional analyses. Regional power estimates

were examined for age effects and also included as nuisance regressors in all PLV × Age models. ICA, independent

components analysis; MEG, magnetoencephalography; MNE, minimum-norm estimate; PLV, phase-locking value; ROI,

region of interest; tSSS, temporal signal space separation.

https://doi.org/10.1371/journal.pbio.2004188.g001

Oscillatory contributions to cognitive development

PLOS Biology | https://doi.org/10.1371/journal.pbio.2004188 November 30, 2018 5 / 29

https://doi.org/10.1371/journal.pbio.2004188.g001
https://doi.org/10.1371/journal.pbio.2004188


Regional changes in PLV and power

To determine the anatomical locus of PLV decreases with age in the 5–9 Hz band, we averaged

each individual subject’s PLV matrices in the 5–9 Hz frequency interval. Next, we regressed

age onto each ROI pair’s PLV, controlling for motion and power (see Methods) and extracted

the beta weight for age from each model. This resulted in a pairwise matrix of beta weights

(beta matrix), representing the rate of change across development in slow frequency PLV for

each ROI pair.

We examined whether age-related changes in PLV demonstrated anatomical gradients

across the cortex. To that end, we obtained a summary rate of change for each ROI by sum-

ming down the columns of the beta matrix and regressing each ROIs summed beta weight

against its y-coordinate (in Montreal Neurological Institute [MNI] coordinate space) in each

hemisphere and x-coordinate, separately. Average distance from each ROI to every other ROI

and ROI surface area were included as nuisance regressors in all regression models to control

for distance-dependent artifacts (i.e., anatomically proximal regions have artificially inflated

PLV). Along the anterior-to-posterior axis, we observed a significant negative relationship

between the summed beta weights and the y-coordinate (t = −13.19, p< 10−10), indicating a

strong anterior-to-posterior gradient of PLV change, such that frontal regions showed greater

decreases in theta band PLV (i.e., more decoupling) with age than posterior regions (Fig 3A

and 3B). Regions undergoing the greatest decrease in PLV (top 5%) over development are

rank ordered in Table 1. In the lateral-to-medial gradient, we observed a significant negative

relationship between the summed beta weights and the x-coordinate in the left hemisphere

Fig 2. Developmental differences in global cortical phase-locking and power. (A) Across most frequency bands, adolescents displayed similar

resting-state phase-locking to adults. However, in the 5–9 Hz frequency band, there was a significant linear decrease in phase-locking throughout

development (gray shaded region; p< 0.05, FDR corrected). Top color bar represents the magnitude of the t statistic from the PLV × Age regression

model. Data displayed categorically after segregation into 2 groups via a median split. (B) Power as a function of frequency. Delta band power

significantly decreased with age, whereas beta band power significantly increased with age. Top color bar represents the magnitude of the t statistic

from the Power × Age regression model. Data displayed categorically after segregation into 2 groups via a median split. In both (A) and (B), shaded

gray patches represent frequency intervals demonstrating a significant linear relationship with age. Red and blue lines and shaded bars in the line plots

represent the mean (solid line) and standard error of the mean (shaded patch around mean), respectively, in adolescents (red) and adults (blue). See

S1 Data for individual data points. FDR, false discovery rate; PLV, phase-locking value.

https://doi.org/10.1371/journal.pbio.2004188.g002
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(t = −6.97, p< 10−10) but only a trend in the right hemisphere (t = 2.01 p = 0.05), indicating

slow frequency PLV decreased more rapidly with age along the medial wall. In sum, the great-

est rate of decrease in slow frequency PLV occurred in midline frontal regions.

In addition to the PLV analysis, we also characterized regional changes in power through-

out adolescence. For each region, we summed the beta weights across frequencies demonstrat-

ing a significant Power × Age relationship in Fig 2B, for delta and beta bands separately.

Similar to slow frequency PLV, delta band power demonstrated a significant anterior-to-poste-

rior gradient (t = −10.33, p< 0.0001), with the largest age-related decreases in delta power

occurring in frontal regions, especially in the frontal operculum (Fig 4A). In contrast to delta

power, developmental beta band increases in power followed a posterior-to-anterior gradient

(t = 15.86, p< 0.0001), such that the greatest developmental increases in beta band power

occurred in medial and lateral parietal regions (Fig 4B). Of note, the posterior cingulate cortex,

a hub of the default mode (DM) network, demonstrated the greatest age-related increase in

beta band power. Power in the 5–9 Hz frequency interval did not demonstrate any significant

age-related increases or decreases (t = −0.36, p = 0.71), nor did 5–9 Hz power demonstrate any

significant developmental anterior-to-posterior gradients (t = −1.70, p = 0.09).

Age-related changes in PLV and power are frequency specific and specific

to the resting state

To assess developmental changes in the anterior-to-posterior gradient of PLV in other fre-

quency bands, for each subject and each ROI, we regressed age onto PLV and extracted the

Fig 3. Regional age-related differences in phase-locking. (A) Regional age-related decreases in theta band phase-

locking. (B) Scatter plot containing summed regional age effect (beta weight from theta PLV × Age model) as a

function of the region’s anatomical y-coordinate center of mass. (C) PLV × Age anatomical gradient as a function of

frequency. We found that the greatest anterior-to-posterior gradient developmental effect was in the 6–15 Hz regime.

Gray error bars represent standard error of the model fit. Red shaded bar denotes theta/alpha regime. y-Axis

represents the beta weight (slope) of the relationship between PLV and age with the anatomical y-coordinate of the

region’s center of mass. See S1 Data for individual data points. PLV, phase-locking value.

https://doi.org/10.1371/journal.pbio.2004188.g003

Table 1. Regions displaying the greatest rate of decrease in slow frequency phase-locking with age.

X Y Z Hemi Label Network

−22.87 30.04 −17.67 L Middle frontal gyrus Default

35.67 36.83 −11.64 R Middle frontal gyrus Default

31.88 14.36 −30.62 R Superior temporal gyrus Default

22.60 31.59 −18.07 R Middle frontal gyrus Default

3.92 20.38 −21.68 R Orbitofrontal gyrus Default

2.74 38.45 −18.07 R Orbitofrontal gyrus Default

−11.93 24.61 −18.61 L Medial frontal gyrus Default

37.93 6.63 −39.65 R Middle temporal gyrus Default

41.73 49.58 −7.32 R Middle frontal gyrus FP

45.60 28.86 −7.42 R Inferior frontal gyrus FP

39.61 47.59 8.39 R Middle frontal gyrus FP

−7.24 33.40 23.28 L ACC FP

30.20 18.99 −16.89 R Inferior frontal gyrus Ventral attention

12.40 25.56 −24.03 R Orbitofrontal gyrus None

25.06 7.74 −16.41 R Subcallosal gyrus None

51.90 −10.20 −35.81 R Inferior temporal gyrus None

Abbreviations: ACC, anterior cingulate cortex; FP, Frontoparietal; Hemi, hemisphere.

https://doi.org/10.1371/journal.pbio.2004188.t001
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resulting beta weight for age. Beta weight matrices were generated for each frequency interval

(see Methods), summed, and regressed against the ROI’s y-coordinate. We then extracted the

beta weight from the y-coordinate regressor in each regression model and plotted this as a

Fig 4. Regional age-related differences in power. (A) Regional age-related decreases in delta band power. (B)

Regional age-related increases in beta band power. Scatter plots contain summed regional age effect (beta weight from

Power × Age model) as a function of the region’s anatomical y-coordinate center of mass. (C) Power × Age anatomical

gradient as a function of frequency. Error bars represent standard error of the model fit. Red shaded bar denotes delta

and beta band regimes from panels A and B. y-Axis represents the beta weight (slope) of the relationship between

power and age with the anatomical y-coordinate of the region’s center of mass. See S1 Data for individual data points.

https://doi.org/10.1371/journal.pbio.2004188.g004
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function of frequency (Fig 3C). Slow frequency age-related decreases in PLV were most prominent

at 6 Hz. To quantify these results statistically, we tested for significant differences in the correlation

between ROI beta weights and anterior-to-posterior gradients between a given frequency interval

(in 5 Hz bins) by comparing the slopes (i.e., beta weights) of the regression models from each fre-

quency interval to the 6–10 Hz interval (see Methods for more details). A significant difference

would be reflected in a z-statistic> 1.645, p< 0.05, one-tailed, indicating that the 6–10 band had a

significantly greater negative slope between the summed beta weights for PLV × Age and the ana-

tomical y-coordinate of the region. We did not find evidence for a significant difference for the

alpha range (intervals from 11–15 Hz; z = 0.13, p> 0.05). However, for frequencies less than 6 Hz

and greater than 15 Hz, we did find a significant interaction (all z> 1.645, p< 0.05), indicating

that the greatest gradients in PLV occur within the theta and alpha band regime.

To quantify developmental changes in the anterior-to-posterior gradient of power across all

frequency bands, for each subject and each ROI, we regressed age onto power and extracted

the resulting beta weight for age. As in the PLV analysis, beta weight matrices were generated

for each frequency interval (see Methods) and were regressed against the ROI’s y-coordinate.

We observed a negative gradient in the delta regime, whereas a positive gradient existed in the

beta band (Fig 4C). Thus, age-related decreases in delta band power were most prominent in

frontal regions, whereas age-related changes in beta band power were most prominent in pos-

terior regions.

Next, we aimed to determine whether our developmental effect of an anterior-to-posterior

gradients of PLV and power differences with development were specific to the resting state

versus a task state. To this end, we analyzed data from the maintenance period of a working

memory paradigm in a subset of our sample (n = 28; details of MEG task methods and results

in Methods). After extracting pairwise PLVs and regional power for each subject and fre-

quency band within the 5–9 Hz band, we averaged across frequency bands, resulting in 1

phase-locking matrix per subject. Paralleling the resting-state analysis, we regressed age on

each pairwise PLV across subjects, controlling for subject head motion. We extracted the beta

weight from the age regressor, resulting in a beta weight matrix, representing linear effects of

age on changes in PLV during working memory maintenance. To test for an anterior-to-poste-

rior effect as was observed during the resting state, we summed down the columns and

regressed the ROI’s y-coordinate on this summed linear age effect. We did not observe an

anterior-to-posterior gradient during working memory maintenance (t = −0.02, p = 0.98).

Moreover, we did observe the anterior-to-posterior gradient in this subset of subjects (t =

−9.31, p< 10−10) during rest. These findings suggest that the strong decreases in 5–9 Hz

phase-locking in frontal regions likely are specific to the resting state. Similar to PLV, the age-

related effects in delta and beta power were specific to the resting state. We calculated power

during the maintenance period of the working memory task across the delta (1–3 Hz) and beta

band (14–16 Hz and 22–26 Hz). For each frequency interval and each ROI, we regressed age

against power and extracted the beta weights from the age regressor. For each frequency inter-

val, we regressed the y-coordinate against the beta weights. We did not observe an anatomical

gradient within the delta band or beta band during the maintenance period of the task (all

p> 0.05, FDR corrected), suggesting that age-related effects in power are also specific to the

resting state. Together, these results indicate that adolescence is characterized by frequency-

specific changes in PLV and power that are specific to the resting state.

Network-level changes in PLV and power

In addition to specific regional changes in PLV, we aimed to characterize developmental

changes in PLV as a function of networks [45]. For each network combination (e.g., DM-DM,
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DM-FP, etc.), we obtained the mean beta weight of the linear effect of age on PLV for all ROI

pairs of the networks being compared. The resulting heat map is shown in Fig 5A. We then

performed a one-way ANOVA to quantitatively assess whether some networks experienced a

greater rate of change in PLV with age compared to others. Here, we submitted summed beta

weights of within-network interactions (e.g., DM to DM) to the ANOVA. As determined by

the ANOVA test, there was a significant difference in the summed beta weight for age effects

at the network level (F[12,320] = 9.57, p = 10−10). A subsequent post hoc analysis revealed that

the negative linear age effect was greatest for the salience (SAL) network compared to any

other network (p< 0.05) (Fig 5B). More generally, a t test between the beta weights within

association networks and the beta weights within processing networks revealed that PLV

within association networks decreased with age significantly more compared to processing

networks (t = −6.51, p< 0.001).

To make inferences concerning significant developmental differences in delta band and

beta band power at the network level, we performed a one-way ANOVA on the beta weights

by grouping the regions according to a priori network affiliation for the delta and beta regime,

separately. With respect to the delta band, we found a significant difference in the average beta

weight for age effects at the network level (F[12,320] = 22.71, p = 10−36). A subsequent post hoc

analysis revealed that age-related decreases in delta power within networks were greatest for

the auditory, SAL, cinguloopercular, and FP networks (all post hoc comparisons were cor-

rected for multiple comparisons using the Tukey method). For complete post hoc results, see

Table 2.

Fig 5. Network changes in phase-locking. (A) Age-related decreases in phase-locking tended to be within and between association

networks (e.g., DM, FP, and SAL), while within- and between-network oscillations involving processing networks remained relatively

stable. (B) Age-related increases in slow frequency decoupling were greater in association networks than in processing networks

(p = 10−9). Oscillations in the SAL network became significantly more decoupled compared to any other association or processing

network, with the exception of the CP network (all p< 0.05, corrected). See S1 Data for individual data points. AUD, Auditory; CO,

Cinguloopercular; CP, Cinguloparietal; DA, Dorsal Attention; DM, Default Mode; FP, Frontoparietal; NONE, Unknown; RT,

Retrospenial Temporal; SAL, Salience; SMH, Somatomotor Hand; SMM, Somatomotor Mouth; VA, Ventral Attention; VIS, Visual.

https://doi.org/10.1371/journal.pbio.2004188.g005
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With respect to beta band power, we also found a significant difference in the average beta

weight for age-related differences at the network level (F[12,320] = 12.52, p = 10−20). A subse-

quent post hoc analysis revealed that age-related increases in beta power were greatest for

somatomotor, auditory, and visual networks. For complete post hoc results, see Table 3.

Pairwise decreases in resting-state phase-locking

After determining the gradient and locus of decreased phase coupling from adolescence to

adulthood, we analyzed specific ROI pairs driving this decrease. Specifically, we aimed to

determine the specific pairwise interactions that contributed to the greatest rate of 5–9 Hz

oscillatory decoupling. We first identified the top 5% of ROIs that showed the greatest rate of

5–9 Hz decoupling (developmental hubs) from the regional analysis. From those ROIs, we

extracted the top 5% of negative beta weights and plotted the connections, with ROIs grouped

by networks (Fig 6), as assigned by [45]. All ROIs from the regional analysis were within

higher-order association networks, with 8 belonging to the DM network, 3 belonging to the

FP network, 1 belonging to the SAL network, 1 belonging to the ventral attention (VA) net-

work, and 3 belonging to an undefined network, though all regions were within anterior por-

tions of the frontal lobe and are considered part of the limbic network in other parcellations

(e.g., ref [46]). With the exception of 2 links, all links from these developmental hubs were to

regions of other association networks, indicating that pairwise decreases in 5–9 Hz coupling

are largely specific to association networks.

PLV mediation of age and impulsivity

We have demonstrated a strong decrease in 5–9 Hz PLV within midline frontal regions. Given

the role of anterior prefrontal cortex and anterior temporal lobes in impulse control [47] and

the role of theta (4–10 Hz) oscillations in cognitive control [12], we sought to determine

whether decreases in frontal slow frequency PLV were related to decreased impulsivity

Table 2. Comparisons between functional networks in magnitude of age-related change in delta band power.

None RST CP VA DA CO AUD VIS SMM SMH SAL FP DM

DM 0.053 −0.124 −.165 0.025 −0.075 0.037 0.058 −0.199 −0.083 −0.178 0.063 0.021 −0.477

FP 0.032 −0.145 −.186 0.004 −0.096 0.016 0.037 −0.220 −0.104 −0.199 0.042 −0.498

SAL −0.010 −0.187 −.228 −0.038 −0.139 −0.026 −0.005 −0.262 −0.146 −0.241 −0.540

SMH 0.231 0.054 .013 0.203 0.103 0.215 0.236 −0.021 0.095 −0.299

SMM 0.136 −0.041 −.082 0.108 0.008 0.120 0.141 −0.116 −0.394

VIS 0.252 0.075 .034 0.224 0.124 0.236 0.258 −0.278

AUD −0.005 −0.182 −.223 −0.033 −0.134 −0.021 −0.536

CO 0.016 −0.161 −.202 −0.012 −0.113 −0.515

DA 0.128 −0.049 −.089 0.101 −0.402

VA 0.028 −0.149 −.190 −0.503

CP 0.218 0.041 −.313

RST 0.178 −0.353

None −0.531

Each cell represents the network difference between the mean of the summed beta weights from the Delta power × Age model. Cells highlighted in blue indicate a

significant difference with development. The direction of the difference is Row-Column. Diagonal elements contain the mean beta weight (linear age effect of

Power × Age) for each network. First row and column refer to the functional networks.

Abbreviations: AUD, Auditory; CO, Cinguloopercular; CP, Cinguloparietal; DA, Dorsal Attention; DM, Default Mode; FP, Frontoparietal; None, Unknown; RST,

Retrosplenial Temporal; SAL, Salience; SMH, Somatomotor Hand; SMM, Somatomotor Mouth; VA, Ventral Attention; VIS, Visual.

https://doi.org/10.1371/journal.pbio.2004188.t002
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throughout adolescence. The UPPS-P Impulsive Behavior Scale is a validated self-report

59-item measure of impulsivity [48]. Items are endorsed on a 4-point scale from 1 (agree

Table 3. Comparisons between functional networks in magnitude of age-related change in beta band power.

None RST CP VA DA CO AUD VIS SMM SMH SAL FP DM

DM 0.010 −0.003 −0.032 0.003 −0.011 −0.003 −0.014 −0.017 −0.017 −0.024 0.015 0.001 0.058

FP 0.010 −0.004 −0.032 0.003 −0.011 −0.003 −0.014 −0.017 −0.017 −0.024 0.015 0.059

SAL −0.005 −0.019 −0.048 −0.013 −0.026 −0.018 −0.030 −0.032 −0.032 −0.040 0.043

SMH 0.035 0.021 −0.008 0.027 0.013 0.021 0.010 0.008 0.007 0.083

SMM 0.027 0.013 −0.016 0.020 0.006 0.014 0.003 0.001 0.076

VIS 0.027 0.013 −0.016 0.019 0.005 0.014 0.002 0.075

AUD 0.025 0.011 −0.018 0.017 0.003 0.011 0.073

CO 0.013 −0.001 −0.030 0.005 −0.008 0.062

DA 0.021 0.008 −0.021 0.014 0.069

VA 0.008 −0.006 −0.035 0.056

CP 0.043 0.029 0.091

RST 0.014 0.062

None 0.048

Each cell represents the network difference between the mean of the summed beta weights from the Beta power × Age model. Cells highlighted in blue indicate a

significant difference with development. The direction of the difference is Row-Column. Diagonal elements contain the mean beta weight (linear age effect of

Power × Age) for each network. First row and column refer to the functional networks.

Abbreviations: AUD, Auditory; CO, Cinguloopercular; CP, Cinguloparietal; DA, Dorsal Attention; DM, Default Mode; FP, Frontoparietal; None, Unknown; RST,

Retrosplenial Temporal; SAL, Salience; SMH, Somatomotor Hand; SMM, Somatomotor Mouth; VA, Ventral Attention; VIS, Visual.

https://doi.org/10.1371/journal.pbio.2004188.t003

Fig 6. Pairwise age-related decreases in resting-state phase-locking. Pairwise increases in decoupling between the

top 5% of brain regions that showed age-related increases in decoupling (developmental hubs) and their respective top

5% pairwise interactions. Regions (little circles) are colored by the network to which they are affiliated. Link color

represents the network affiliation to which the developmental hub belonged. The most significant pairwise increases

occurred between regions of the DM, and FP networks to other association networks. DM, Default Mode; FP,

Frontoparietal.

https://doi.org/10.1371/journal.pbio.2004188.g006
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strongly) to 4 (disagree strongly). After appropriate reverse scoring, scores for each item range

from 1 (non-impulsive answer) to 4 (high level of self-reported impulsivity). The UPPS-P can

provide scores from specific subscales (e.g., Urgency, Lack of Premeditation, Lack of Persever-

ance, Sensation Seeking). In the current analysis, we utilized a total impulsivity measure (mean

across all items) to increase the precision of each subject’s estimate. Within our sample, total

impulsivity scores from the UPPS-P scale (M = 2.02, SD = 0.35; Range [1.32, 2.75]) were con-

sistent with normative variability in impulsivity as reported in previous work [49]. Further-

more, the Cronbach α for the total impulsivity measure in our sample was 0.93, indicating

excellent internal consistency. Total impulsivity was negatively associated with age (β = −0.333,

t = −2.74, p = 0.008), such that impulsivity decreased significantly with development. To obtain

a cluster of regions that significantly decreased in PLV as a function of age, we submitted the

individual subject matrices to the network-based statistic (NBS) [50]. The NBS is a common

tool used in rs-fMRI studies to identify clusters of suprathreshold links displaying a similar

effect (e.g., increasing or decreasing PLV with age). It seeks to control family-wise error rate

when mass univariate testing occurs, as in the case of running regression analyses on each ROI

pair. Briefly, a test statistic is generated for each ROI pair’s PLV as a function of age. A cluster

is identified using a breadth first search, followed by permutation testing to significance based

on a cluster’s size.

A cluster composed of 49 regions with 122 links survived the permutation test (1,000

resamples; red links in Fig 7A). Similarly, we performed a median split on impulsivity to break

the sample into a high impulsivity group and a low impulsivity group. Individual subject

matrices were once again submitted to the NBS, controlling for age. A cluster composed of 13

regions with 14 links survived the permutation test (1,000 resamples; orange links in Fig 7A).

Three links comprising 5 distinct regions overlapped between the 2 clusters (PLV × Age and

PLV × Impulsivity; yellow links in Fig 7A). For statistical confirmation of overlap between

PLV and age with PLV and impulsivity, we subsequently submitted to 3 separate mediation

analyses. The fist link (L1) was between the left superior frontal gyrus (MNI coordinates: −-

15.05, 64.73, 13.29) and the right inferior frontal gyrus (MNI coordinates: 25.07, 7.38, −16.41),

the second link (L2) was between the left temporal gyrus (MNI coordinates: −50.60, 9.26, −-

18.71) and right medial frontal gyrus (MNI coordinates: 12.40, 25.55, −16.38), and the third

link (L3) was between the left middle temporal gyrus (MNI coordinates: −44.87, 7.38, −34.85)

and the right medial frontal gyrus (MNI coordinates: 12.40, 25.55, −16.38). As a separate

means of dimensionality reduction more focused on the a priori network organization, as well

as the strong 5–9 Hz decoupling within the SAL network, we also tested mean SAL network

PLV as a mediator between age and impulsivity. Mean SAL network PLV was not associated

with UPPS-P total impulsivity scores while co-varying age (β = −0.183, t = −1.45, p = 0.152).

In addition to PLV, we also tested delta band power and beta band power for meditation in

the relationship between age and impulsivity. Neither delta (minimum p = 0.47, FDR cor-

rected) nor beta-power (minimum p = 0.90, FDR corrected) in any node significantly medi-

ated the relationship between age and impulsivity. Together, these results indicate that resting-

state slow frequency phase-locking, not power, contributes to age-related decreases in

impulsivity.

Mediation analysis on each link separately revealed that partialing out the variance of each

of the 3 ROI pairs significantly attenuated the relationship between age and impulsivity (indi-

rect pathway [path ab], L1: β = −0.133 [95% CI −0.244 to −0.017], p = 0.03; L2: β = −0.154 [95%

CI to −0.322, −0.023], p = 0.02; L3: β = −0.130 [95% CI, −0.251 to −0.036], p = 0.003). For sta-

tistics on individual paths, see Fig 7B. These findings suggest the observed age-related

decreases in impulsivity is, in part, accounted for by the decoupling of slow frequency oscilla-

tions during the resting state between the anterior prefrontal cortex and the anterior temporal
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lobe. However, care should be taken when interpreting the mediation effects, as links demon-

strating significant mediation did not survive multiple comparisons corrected when all

PLV × Age links were tested together. Regardless, overlapping links between brain/behavior

and brain/age relationship suggest that slow frequency PLV, in part, contributes declining

impulsivity during adolescence.

Fig 7. Frontolimbic 5–9 Hz phase-locking is related to decreased impulsivity during adolescence. (A) Anatomical location

PLV × Age and PLV × Impulsivity relationships. Red links denote the significant PLV × Age NBS cluster. Orange links denote the

significant PLV × Impulsivity NBS cluster. Yellow links denote overlap between the 2 clusters. These overlapping links were tested for

mediation. (B) Mediation model including statistics for specific paths. Note PLV of these 3 interactions fully mediated the relationship

between age and impulsivity (difference in p-values between path C and paths in C’), confirming overlap of clusters. NBS, network-

based statistic; PLV, phase-locking value.

https://doi.org/10.1371/journal.pbio.2004188.g007
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Discussion

Interactions between functional brain networks demonstrate a protracted development well

into adolescence and early adulthood [6,7,10] and have been shown to support the maturation

of cognitive control [7]. However, the development of resting-state network oscillations and

their contribution to cognitive development have not been explored. We found a decrease in

theta band (5–9 Hz) phase coupling that was strongest in midline frontal regions, especially in

association networks. In parallel, many of the strongest pairwise decrease in resting-state theta

coupling occurred between regions affiliated with the DM, FP, and SAL networks. Further-

more, decreased slow frequency coupling between anterior frontal and temporal lobe regions

was related to decreased impulsivity with development, providing an oscillatory contribution

for decreased impulsivity throughout development.

In terms of oscillatory power, we found a redistribution of power from slower delta oscilla-

tions to faster beta oscillations. These findings support and extend prior resting-state EEG

[31,34], and concurrent EEG-fMRI studies [51] have reported significant developmental

decreases in delta power and increases in beta power [35]. Here, we extend these findings

through source localization enabling characterizing of these developmental changes in terms

or regions and functional networks. Specifically, there were significant age-related decreases in

delta power, most strongly in frontal and opercular regions comprising the SAL and cinguloo-

percular networks. Conversely, there were significant age-related increases in beta power,

most prominent in processing networks. The posterior cingulate cortex, a hub of the DM,

demonstrated the greatest age-related increase in beta band power. The DM network demon-

strates a protracted development in BOLD connectivity [52], supporting increased specializa-

tion and integration of this network with other functional networks [53].

A canonical feature of electrophysiological estimates of power and phase during the resting

state is the dominance of oscillations in posterior regions of the brain. The negative slope of

age-related decreases as a function of the posterior-to-anterior gradient suggests that frontal

regions are becoming more decoupled broadly but most prominently, and statistically signifi-

cantly, for the 5–9 Hz (theta) band. The post hoc analysis in which we tested for significant dif-

ferences in the correlation between ROI beta weights and anterior-to-posterior gradients

between a given frequency interval (in 5 Hz bins) statistically supports the notion that the ante-

rior-to-posterior gradient is most prominent for the 5–15 Hz frequency interval, which

includes the theta (5–9 Hz) interval in which we observed a significant negative relationship

between PLV and age. Thus, the gradient analyses, in conjunction with Fig 3A, provide evi-

dence that theta band (5–9 Hz) decoupling is most prominent in midline prefrontal regions.

Similar to early electrophysiological work using EEG to study coherence between cortical

lobes [54], we found a protracted development of control networks within the 5–9 Hz fre-

quency interval, particularly within the SAL network, comprised of the anterior cingulate and

aIns. Both of these regions are anatomical and functional hubs of the cortex [55,56], with ana-

tomical connections to several major brain networks. Generally, theta band oscillations have

been shown to organize higher frequency activity, providing a temporal template for neuronal

communication [22,26]. Thus, the phase of theta band oscillations may be critical for the coor-

dination of neural activity [22,27]. Supporting this supposition, a large body of evidence sug-

gests oscillations arising from the SAL network entrain disparate control networks when the

need for control is realized [12]. Because adolescence is marked by substantial reductions in

behavioral variability that is reliant on control networks [4,57,58], we propose that age-related

frontal theta decoupling during the resting state may support the enhanced ability for adults to

reliably instantiate control and coordinate regulatory control networks. In support of this,
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BOLD connectivity studies have found increases in the spatial variability of control and atten-

tion networks with development but stability of processing networks [53].

A cluster of frontolimbic regions in anterior prefrontal and anterior temporal lobes also dis-

played slow frequency decoupling with development. Interactions between these frontolimbic

regions and the SAL network had the greatest rate of decoupling of any within- or between-

network comparison (Fig 5A). Frontolimbic connectivity is often prescribed a role in impulse

control, and when structurally lesioned, leads to greater impulsivity [59,60]. Additionally,

recent diffusion tensor imaging and fMRI evidence suggests that frontolimbic connectivity

decreases both structurally and functionally throughout adolescence [61,62]. Here, we showed

evidence that several interactions between frontolimbic regions were related to impulsivity

and also demonstrated significant slow frequency decoupling, confirmed by a mediation anal-

ysis. Theta band (5–9 Hz) oscillations may be the mechanism by which these regions commu-

nicate to execute impulse control given the role of theta oscillations in the instantiation of

cognitive control [12]. Lending support to this proposal, theta band activity tends to flow from

frontal regions to more posterior regions [63], suggesting a possible causal association.

Phase-locking should be largely unaffected by power within the same frequency band (but

see ref [64]). While age-related changes in PLV and power are related to overarching processes

of brain maturation through adolescence, they inform different levels of neural processing.

While frequency changes reflect local circuit modifications, PLV reflects the possible interareal

effects of these circuit modifications, specifically with regard to coupling across brain regions.

Distinct circuit and systems-level modifications are evident through adolescence that would

have direct effects on both frequency and coupling (see [65] for a review). At the circuit level,

power may be directly affected by maturation inhibitory circuitry supported by increases in

GABA, particularly parvalbumin interneurons within the prefrontal cortex [66–68], resulting

in greater power within the beta/gamma frequency range [69]. In parallel, and likely indirectly

related, there are systems-level changes in specialization of existing connections, such as age-

related decreases in frontolimbic connectivity [10,61], that would contribute to the decoupling

of slow wave oscillations affecting PLV. As such, developmental decreases in phase-locking

may reflect stochastic resonance and/or neural flexibility [70]. If the brain were to maintain a

rigid configuration of interactions at this timescale during rest, the ability to explore and

switch between brain states would be undermined. Indeed, a prominent theory on the nature

of resting state proposes that it serves to allow the sampling of multiple network configurations

along an anatomical backbone [71,72]. If this is the case, functional brain networks require

flexibility in the form of imperfectly coupled oscillators (i.e., variability) to maintain dynamics

in networks at this timescale (millisecond). Several studies have found evidence for increased

cortical variability throughout development [70,73,74]. Our findings here support these fMRI-

based findings in that decreased phase-locking may represent an overall age-related increase

in variability [40,75,76], as well as an overall increase in signal complexity.

A potential limitation of the current study is the depth sensitivity of MEG. The signal-to-

noise ratio (SNR) falls with increasing distance from the MEG sensors. However, this limita-

tion exists across all subjects, and thus all ages considered in this study. Given this limitation,

we were able to demonstrate decreases in theta band phase-locking within medial wall struc-

tures that showed specificity to the resting state versus a working memory task-state.

In sum, our results support and extend previous electrophysiological work characterizing

the development of oscillatory power, such that power is redistributed from slower frequency

oscillations to faster frequency oscillations. Slow frequency delta oscillations decreased most

with age in the frontal operculum, whereas faster beta band oscillatory power increased most

strongly in processing networks and the posterior cingulate cortex. Additionally, we found evi-

dence that developmental decreases in slow frequency coupling between control networks
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supports the transition from adolescence to adulthood that may be related to age-related

improvements in impulse control. Age-related decreases in coupling of these oscillations dur-

ing the resting state may be a mechanism of increased neural flexibility that occurs during ado-

lescence [57,73,74]. As such, future studies should probe frontal theta as a mechanism by

which control instantiation is refined during adolescence, using tasks that probe cognitive flex-

ibility, such as task switching and rapid instructed task learning paradigms [77].

Methods

Ethics statement

All subjects gave written informed consent; parent or guardian consent was obtained for all

subjects aged 14 to 17 years. The University of Pittsburgh Institutional Review Board (IRB pro-

tocol number: PRO10090478) approved the study, adhering to the Declaration of Helsinki.

Subjects were compensated monetarily for their participation in the study.

Subjects

Of the 81 adolescents and adults we recruited for this study, we include data from 68 subjects,

ranging in age from 14 to 31 years (M = 22.51, SD = 5.55). Thirteen subjects were dropped due

to unavailable ECG and/or electrooculogram (EOG) data. Based on a questionnaire, none of

the subjects—nor their first-degree relatives—currently or previously had a psychiatric or neu-

rological disorder.

Structural MRI acquisition

For each subject, we acquired a structural MRI to coregister MEG data for analyses in source

space. Data from the 68 remaining subjects were pooled from 2 separate protocols within the

lab and thus had slightly different structural MR sequences, which would not affect subsequent

processing steps. For 28 subjects, structural images were acquired using a sagittal magnetiza-

tion-prepared rapid gradient-echo sequence (repetition time [TR] = 2,100 ms, echo time [TE]

= 3.43 ms, flip angle = 8˚, inversion time [TI] = 1,050 ms, voxel size = 1 mm isotropic). For the

other 40 subjects included in the second protocol, structural images were acquired using a sag-

ittal magnetization-prepared rapid gradient-echo sequence (TR = 2,200 ms, TE = 3.58 ms, flip

angle = 9˚, TI = 1,000 ms, voxel size = 1 mm isotropic).

MEG data acquisition

Resting-state MEG data (300 seconds) were acquired using an Elekta Neuromag Vectorview

MEG system (Elekta Oy) comprising 306 sensors arranged in triplets of 2 orthogonal planar

gradiometers and 1 magnetometer, distributed to 102 locations. The MEG scanner was located

inside a 3-layer magnetically shielded room within the University of Pittsburgh Medical Cen-

ter. The data were acquired continuously with a sampling rate of 1,000 Hz. Head position rela-

tive to the MEG sensors was measured continuously throughout the recording period to allow

off-line head movement correction. Two bipolar electrode pairs were used to record vertical

and horizontal EOG signals to monitor eye movement. A potential confound of developmental

studies using MEG is that head size is smaller in younger subjects. Given the sensor locations

in the MEG helmet are fixed, smaller heads will by definition have lower signal to noise, as

they are further from the sensors. On average, head size is fully developed by 10 years of age

[78], which is well below the age of our youngest subject (14 years). We regressed age onto

intracranial volume (ICV) and did not observe a significant relationship between ICV and age

(t = −1.05, p = 0.29). Additionally, we regressed ICV onto global theta band (5–9 Hz) PLV and
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did not observe a significant relationship between ICV and global theta band PLV (t = −0.02

p = 0.96).

MEG data processing

For artifact removal, we first manually visually inspected every channel across the resting state

run for noisy or flat channels and squid jumps. MEG data were then preprocessed off-line

using the temporal signal space separation (tSSS) method (10 second correlation window, 0.98

correlation limit), which uses spatial and temporal features to separate signals into compo-

nents generated within the MEG helmet and components from outside the helmet, which

must be artifactual [79,80]. This method greatly increases the SNR of the resulting data [81].

tSSS also performs head movement compensation by aligning sensor-level data to a common

reference [82]. This head motion correction procedure also provides estimates of head motion

relative to sensor coordinates that we subsequently used for head motion estimates for each

subject. Lastly, the raw time series data were down-sampled to from 1,000 Hz to 250 Hz.

An independent components analysis (ICA) approach was used to automatically detect

and attenuate heartbeat, eye blink, and eye movement artifacts. ICA was performed on each

channel using the Infomax algorithm, with the number of components selected to account

for 95% of the variance. The Pearson correlation of the components and the ECG or EOG

channel is used to identify artifactual sources through an iterative thresholding method (as

implemented in minimum-norm estimate [MNE] Python [83]) and subsequently manually

inspected. After removal of the artifactual sources, the data were reconstructed from the

remaining components.

MEG sensor data were then projected from the sensors on to the cortical surface to estimate

source activities, using the MNE procedure. First, the geometry of each participant’s cortical

surface was reconstructed from the respective structural MRI using FreeSurfer [84,85]. The

solution space for the source estimation was then constrained to the gray/white matter bound-

ary by placing 5,124 dipoles per hemisphere. A forward solution for the constructed source

space was calculated using a single compartment boundary-element model. The noise covari-

ance matrix was calculated from a 2-minute empty room scan, in which we acquired data with

no subject present. The noise covariance matrix and the forward solution were then combined

to create a linear inverse operator to project the resting-state MEG sensor data to the cortical

surface. We then warped individual subject data from native space to FreeSurfer average space

to facilitate between-subject interpretation of specific regions and networks.

ROIs

We extracted the time series of resting-state MEG data from a recent parcellation of 333 ROIs

covering the entire cortical surface [45]. This atlas was chosen because it comprises major cor-

tical functional networks, including control networks, processing networks, and the DM net-

work and covers the entire cortical surface. Developmental changes in these networks have

been observed in fMRI studies [6,7] and are thus candidates for electrophysiological develop-

mental changes at the timescales of which MEG is sensitive.

Phase-locking calculation

For each pair-wise relation between ROIs for each subject, a PLV was calculated for each fre-

quency of interest (1–49 Hz in 1-Hz intervals). Phase-locking is a measure of the propensity

for 2 signals to maintain a constant phase separation with each other (i.e., synchrony). There-

fore, the PLV provides a measure of temporal variability between 2 MEG signals [40].
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Here, we binned the data into 100 three-second chunks and obtained 1 PLV across the time

windows using a multitapers method with digital prolate spheroid sequence (DPSS) windows

(3 tapers), as implemented in MNE python (mne.spectral.connectivity). Three seconds is a suf-

ficiently long segment of data to obtain a reliable estimate of oscillations as low as 1 Hz, as a

common recommendation for the minimum number of cycles per window to achieve reliable

frequency estimates is 3 [86]. To calculate the PLV at each frequency, 2 time series are spec-

trally decomposed at a given frequency, given by the equation

PLV ¼
1

N

XN

n¼1

eiðy1ðnÞ� y2ðnÞÞ
�
�
�
�
�

�
�
�
�
�

where N is the number of sampled time points and θ1 and θ2 are the phase values at time point n.

The PLV was calculated for each ROI pair, resulting in 55,278 PLVs for each frequency and for

each subject. A single averaged PLV was then computed by averaging all of the PLVs, ranging

from 0 to 1, representing a random phase relationship and fixed phase relationship, respectively.

Power calculation

For each ROI, power was calculated using the Welch method (pwelch function in MATLAB)

on the 100 three-second chunks of data, with an overlap of 50%. The relative power at each fre-

quency interval in the range of 1–49 Hz (1 Hz bins) was calculated by dividing the power at a

given frequency by the total power (summed power) in the 1–49 Hz interval. This value repre-

sents the relative magnitude of each frequency in relation to the total signal.

Determining age-related changes in phase-locking

After ROI × ROI PLV individual subject matrices were calculated at each frequency, individual

subject matrices were concatenated forming a 333 × 333 × 49 × 68 four-dimensional matrix.

First, we asked whether there were developmental changes in PLV across a broadband fre-

quency range (1–49 Hz). To this end, we averaged the four-dimensional matrix along the first

2 dimensions of the upper triangle, resulting in a single PLV value at each frequency for each

subject. A linear mixed-effects model with maximum likelihood estimation was used to exam-

ine main effects and interactions predicting PLV. Age and frequency were entered as fixed

effects, and random intercepts were estimated for each subject. Significance values for fixed

effects were obtained through a likelihood ratio test between models with and without the

effects in question (chi-squared test). To test individual frequencies for PLV × Age effects, we

regressed PLV against age within each frequency bin and corrected for multiple comparisons

using FDR [87]. For visualization purposes in Fig 2A, we performed a median split by age.

Determining age-related changes in power

First, we asked whether global (across all ROIs) relative power at any frequency interval dem-

onstrated a significant age effect. After relative power was determined for each ROI at each fre-

quency interval, we averaged power across all ROIs for each subject. We then performed a

linear regression analysis at each frequency interval (1–49 Hz; 1-Hz bins) and corrected for

multiple comparisons using an FDR correction [87]. For visualization purposes in Fig 2B, we

performed a mediation split by age.

Anterior-to-posterior gradient of decoupling across development

Once we determined the frequency ranges of significant age effects in phase-locking (theta

band: 5–9 Hz) and power (delta band: 1–3 Hz; beta band 14–16 and 22–26 Hz), we sought to
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determine the specific regions in which phase-locking and power were significantly changing

with age. For the analysis of power, for each ROI, we ran linear regression models to determine

the rate of change in power within each frequency band as a function of age and extracted the

beta weight value from the age regressor. This resulted in a beta weight matrix

(ROI × Frequency). We then summed across frequencies within the range of significant effects

(e.g., 1–3 Hz for delta band power) for each ROI. For the phase-locking analysis, we ran linear

regression models to determine the rate of change in PLV within the theta band as a function

of age, controlling for potential confounds, including motion, power, and distance (see below).

This resulted in a 333 × 333 matrix of beta weights from the age regressor, representing the

rate of change in phase-locking for every ROI pair. To obtain a summary statistic for each

ROI, we summed down each column of the matrix, resulting in 333 summed beta weights,

which we use to characterize the summed rate of change with age for every ROI across the cor-

tical surface. This process was repeated across frequencies of interest (1–49 Hz) by averaging

across frequencies in 5 Hz bins (i.e., 1–5 Hz, 6–10 Hz, . . ., 46–49 Hz).

We were interested in general trends across the cortical surface. To this extent, we calcu-

lated the center of mass for every ROI to obtain a center coordinate and to also get a measure

of Euclidean distance between each ROI pair. We the regressed the y-coordinate of the ROI

onto the summed beta weights for each ROI (for power and phase analyses separately), con-

trolling for average distance between ROIs and ROI surface area. The average distance

between ROIs was included as a nuisance regressor to attenuate the effects of volume conduc-

tion. For the PLV analysis, this process was also repeated at each frequency interval and across

5 Hz frequencies bins in the range of 1–49 Hz to determine the specificity of the anterior-to-

posterior gradient to the theta band. Specifically, we tested for a significant difference between

the slope of each regression model (i.e., beta weights) versus the model including the theta

band (6–10 Hz for this analysis) using the following formula [88]:

z ¼
β1 � β2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SEβ2

1
þ SEβ2

2

q

where z is equal to the test statistic (values > 1.645 correspond to p< 0.05, one-tailed), β1 is

equal to the regression coefficient of the y-coordinate in the 6–10 Hz interval, β2 is equal to the

regression coefficient of the y-coordinate in the test interval (e.g., 1–5 Hz), SEβ1
2 is the squared

standard error of the β1 coefficient, and SEβ2
2 is the squared standard error of the β2

coefficient.

Specific ROI interactions driving regional changes in PLV

Next, we wanted to identify any trends in specific ROI pairs driving regional decreases in

phase-locking. First, we sorted ROIs according to the magnitude of the summed beta weights.

We then further probed the top 5% of these ROIs (n = 16), which represents the 16 ROIs

undergoing the greatest amount of developmental decrease in phase-locking. Of those 16

ROIs, we further thresholded each ROI’s specific interactions with other ROIs to maintain

only the top 5% of each ROIs pairwise beta weight (n = 16 pairwise interactions for each of the

16 ROIs), resulting in a total of 256 pairwise beta weights demonstrating the greatest rate of

ROI-ROI decrease in phase-locking.

Control for power in PLV × Age models

We wanted to ensure any age-related changes we observed in PLV was not due to changes in

the total amount of activity (power) in an area within any given frequency band [64]. First, we
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extracted a power estimate for each ROI. Specifically, we calculated relative power (see “Power

calculation”). We then extracted relative power in the 5–9 Hz frequency band within subjects

by taking the mean power within this frequency range for each ROI and dividing by broad-

band total power (1–49 Hz) for each ROI. For each ROI within each subject, this procedure

resulted in relative theta band power. We then averaged across subjects to obtain a mean rela-

tive theta band power for each ROI. This value was then plotted against each ROIs y-coordi-

nate to determine the anterior-to-posterior gradient in power across the cortex. Because a

significant anterior-to-posterior gradient in power was observed (more power in posterior

regions), we included as nuisance regressors the power of each ROI, the interaction between

each ROI pair, the log-transformed power of each ROI, and the log-transformed interaction

term of each ROI pair into the age models for each ROI pair. Additionally, matching the PLV

analysis pipeline, we regressed power onto age at every frequency interval ranging from 1–49

Hz in 1 Hz increments.

Head movement correction

During MaxFilter preprocessing, continuous head position estimates are calculated, and any

large or sudden head movements are recorded. While MaxFilter performs head movement

correction by aligning sensor data to a common reference, it does not account for artifacts gen-

erated by head movements, and we wanted to ensure any effects were not a result of head

motion artifacts. After extracting the estimated movements from the MaxFilter output, we

used the translation vector and rotation matrix for the head position relative to the sensor

array (obtained from coregistration) to calculate a three-dimensional head movement vector

relative to each sensor at each time point. The norm of this movement vector was averaged

across sensors to obtain a single measure of head motion. This motion estimate for each sub-

ject was included as a nuisance regressor in all regression models involving the analysis of age-

related changes in PLV.

Relationship of impulsivity with PLV and power

Prior to the neuroimaging visit (M = 43.61 days, SD = 43.33 days), a subsample of participants

(n = 62) completed the UPPS-P Impulsive Behavior Scale [48,89–92], either in an online

screening (n = 28) or a separate behavioral visit (n = 34). In the current analysis, total impulsiv-

ity scores were estimated according to procedures outlined by [48]. We then regressed age

onto this total impulsivity score and observed a significant negative linear relationship between

total impulsivity and age (see Results).

To determine overlap between links demonstrating a significant PLV × Age relationship

and a significant PLV × Impulsivity relationship in a nonarbitrary, data-driven manner, indi-

vidual subject theta band PLV matrices were submitted to the NBS [50], and a t test was run

between adolescents and adults to extract a cluster of regions with a significant decrease in

theta PLV with age. We then performed the NBS on the relationship between impulsivity and

theta PLV, controlling for age. A total of 3 connections overlapped between the 2 models and

were subsequently confirmed using mediation analysis.

To examine whether differences in PLV may account for age-related differences in impul-

sivity, mediation analysis was performed on PLV values within connections that had signifi-

cant associations with (1) age and (2) impulsivity (while controlling for age), as defined above.

Significance values for indirect effects were obtained using 5,000 draws in a bootstrap proce-

dure [93].

To determine whether resting-state delta band or beta band power mediated the relation-

ship between age and impulsivity, similar to the PLV analysis, we tested each ROI across these
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2 frequency bands for mediation effects. Significance values for indirect effects were obtained

using 5,000 draws in a bootstrap procedure, as was done previously.

Working memory task

The spatial working memory task was modeled on the classic Sternberg working memory par-

adigm. Cue stimuli were yellow circles appearing in 1 of 8 possible locations. Each trial began

with fixation followed by a presentation of 3 frames (300 ms each) showing one cue stimulus

at a time in either the same location or 3 different locations. A blank grid was inserted between

the frames for 200 ms to decrease chunking and motion perception. A 1,500 ms (50% of trials),

3,000 ms (25% of trials), or 4,500 ms (25% of trials) delay period was used to minimize habitu-

ated preparatory responses.

Following the delay period, subjects made a button press to indicate whether a frame show-

ing 4 circles located among 8 possible locations had occurred in any of the previous cue loca-

tions (50% of trials) or were all in novel locations (50% of trials). A total of 144 high load trials

and 144 low load trials were distributed across 12 runs, with the order randomized within

runs. Intertrial fixation intervals ranged between 1,000 and 4,500 ms, with a short break

between runs. The task was designed and run using E-Prime (Psychology Software Tools, Inc.,

Pittsburgh, PA).

Task MEG data preprocessing

MEG data were first manually inspected for flat or noisy channels that can arise due to sensor

malfunction, and these channels were removed from further analysis, as excessively noisy or

flat channels may adversely impact further preprocessing steps and data analysis. The maxi-

mum number of channels excluded within a single participant was 23. As we did with the rest-

ing-state data, we attenuated environmental noise using the MaxFilter software to apply tSSS

[80]. If at any time during a trial the total displacement of MEG sensors relative to the head

was greater than 5 mm, the trial was rejected from all future analyses. Across all participants,

only 38 total trials were dropped for head motion, with at most 4 trials dropped for head

motion within a single participant.

The remaining preprocessing steps were applied using tools in the MNE Python package

[83]. First, the data were band-pass filtered to the frequency range of interest (1–49 Hz) using

a 10-second overlap-add FIR filter. Cardiac, eye blinks, and eye movement (saccade) artifacts

are not identified by tSSS because they originate from the subject’s body, so we used an ICA

method to attenuate these artifacts, similar to the resting-state methods. The shapes of the

automatically detected artifactual components were checked visually to verify the selection of

artifactual components, and the selection of components was then amended in the rare cases

that the automatic procedure failed to identify components that showed clear EOG or ECG

patterns. Finally, trials were screened for remaining sensor jumps, muscle artifacts, or saccade

artifacts by checking for magnetometer amplitudes that exceeded 2.5 × 10−10 T or gradiometer

amplitudes that exceeded 4 × 10−10 T/m; no further trials were rejected by these criteria.

During the experiment, trial event onset times were recorded into a digital stimulus channel

through the E-Prime software. The event timings and codes from this channel were checked

against E-Prime log files to remove spurious events that occurred in some runs due to software

timing synchronization glitches. Based on this verified trial event data, trials with incorrect or

omitted responses were removed because we are interested only in trials during which working

memory was successfully engaged. In addition, a total of 10 trials across all participants were

rejected due to mismatches between stimulus channel event codes and timing reported by

E-Prime, with at most 4 trials dropped from a single subject for this reason.
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After preprocessing, we extracted the first 1,500 ms of the maintenance period from the

task and calculated the PLV between each of the 333 ROIs in the 5–9 Hz frequency range, fol-

lowing the resting-state analysis pipeline. For each ROI pair, we then regressed the PLV onto

age, controlling for subject head motion. Next, the beta weight from the age regressor was

extracted from each model, and beta weight matrices were constructed. As in the resting-state

analysis, we summed down the columns of the matrix to get a summed beta weight represent-

ing the total linear age effect. We then regressed this value for ROI against the ROI’s anatomi-

cal y-coordinate and did not observe any anterior-to-posterior effects (t = −0.02, p = 0.98).
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