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A B S T R A C T

Deep brain stimulation (DBS) is an established and effective treatment for several movement disorders and is
being developed to treat a host of neuropsychiatric disorders including epilepsy, chronic pain, obsessive
compulsive disorder, and depression. However, the neural mechanisms through which DBS produces therapeutic
benefits, and in some cases unwanted side effects, in these disorders are only partially understood. Non-invasive
neuroimaging techniques that can assess the neural effects of active stimulation are important for advancing our
understanding of the neural basis of DBS therapy. Magnetoencephalography (MEG) is a safe, passive imaging
modality with relatively high spatiotemporal resolution, which makes it a potentially powerful method for
examining the cortical network effects of DBS. However, the degree to which magnetic artifacts produced by
stimulation and the associated hardware can be suppressed from MEG data, and the comparability between
signals measured during DBS-on and DBS-off conditions, have not been fully quantified. The present study used
machine learning methods in conjunction with a visual perception task, which should be relatively unaffected by
DBS, to quantify how well neural data can be salvaged from artifact contamination introduced by DBS and how
comparable DBS-on and DBS-off data are after artifact removal. Machine learning also allowed us to determine
whether the spatiotemporal pattern of neural activity recorded during stimulation are comparable to those
recorded when stimulation is off. The spatiotemporal patterns of visually evoked neural fields could be accurately
classified in all 8 patients with DBS implants during both DBS-on and DBS-off conditions and performed
comparably across those two conditions. Further, the classification accuracy for classifiers trained on the
spatiotemporal patterns evoked during DBS-on trials and applied to DBS-off trials, and vice versa, were similar to
that of the classifiers trained and tested on either trial type, demonstrating the comparability of these patterns
across conditions. Together, these results demonstrate the ability of MEG preprocessing techniques, like temporal
signal space separation, to salvage neural data from recordings contaminated with DBS artifacts and validate MEG
as a powerful tool to study the cortical consequences of DBS.
1. Introduction

Over the past several decades, deep brain stimulation [DBS] has
emerged as an increasingly common treatment option for Parkinson's
disease and other movement disorders (Coubes et al., 2004; Limousin
et al., 1998; Miocinovic et al., 2013). Additionally, it is being investigated
as a potential treatment for neuropsychiatric disorders such as chronic
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pain (Pereira and Aziz, 2014), obsessive compulsive disorder (Mallet
et al., 2008), Tourette's Syndrome (Ackermans et al., 2011), addiction
(Alba-Ferrara et al., 2014), Alzheimer's disease (Laxton et al., 2010), and
depression (Holtzheimer et al., 2012). Despite its increasing prevalence,
the mechanisms whereby DBS produces therapeutic outcomes and un-
wanted side effects in these disorders are largely unknown (Alhourani
et al., 2015). This is partially due to limitations in the ability to
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non-invasively examine dynamic neural activity evoked by DBS, which
requires comparisons between neural activity when the DBS device is on
versus when it is off. These comparisons remain challenging because
meaningful changes in neural activity must be isolated from signal arti-
facts introduced by DBS and the associated hardware.

Positron emission tomography [PET], functional magnetic resonance
imaging [fMRI], and electroencephalography [EEG] have all been
employed to investigate the therapeutic effects of DBS on different dis-
eases [see (Alhourani et al., 2015; Hamani and Moro, 2012; Perlmutter
and Mink, 2006) for review]. However, all have inherent limitations,
which make them imperfect for investigating this question. For example,
hemodynamic responses measured with PET and fMRI lack the temporal
resolution necessary to examine altered oscillatory dynamics evoked by
DBS. In addition to this, the safety of exposing DBS subjects to the large
magnetic fields produced by fMRI has been previously called into ques-
tion (Finelli et al., 2002; Georgi et al., 2004; Shrivastava et al., 2012),
despite some evidence that it is safe (Carmichael et al., 2007). EEG lacks
the spatial resolution to accurately localize the downstream effects of
DBS and is highly contaminated by electrical artifacts produced by
stimulation.

Magnetoencephalography (MEG), on the other hand, is a particularly
suitable approach to studying the effects of DBS stimulation (Harmsen
et al., 2018). MEG is a passive imaging modality which does not intro-
duce any safety concerns to DBS patients, even with ferromagnetic im-
plants. However, MEG is susceptible to magnetic artifacts caused by DBS
(Airaksinen et al., 2011) and those produced by the movement of DBS
extension wires extending from the implant to battery pack (Airaksinen
et al., 2011; Litvak et al., 2010). Despite this, several studies have sug-
gested that various artifact rejection methods like temporal signal space
separation [tSSS] (Taulu and Hari, 2009; Taulu and Simola, 2006), in-
dependent component analysis (Abbasi et al., 2016) and null beam-
forming (Litvak et al., 2010; Mohseni et al., 2012, 2010) have been
proposed for suppressing these artifacts and salvaging physiologically
relevant brain information (Airaksinen et al., 2011; Gopalakrishnan
et al., 2018; Kringelbach et al., 2007; Litvak et al., 2010; M€akel€a et al.,
2007; Mohseni et al., 2010; Park et al., 2009). And unlike PET, fMRI, and
EEG, MEG signals have spatiotemporal fidelity and provide information
from the entire brain, which makes it potentially very useful for inves-
tigating how DBS effects distributed cortical processing networks.

Although several studies have shown the utility of various artifact
rejection techniques, analysis of MEG-DBS data remains difficult due to
persistence of magnetic artifacts in the data (Cao et al., 2017, 2015;
M€akel€a et al., 2007), or loss of physiological signal to noise due to
cross-contamination of artifact with meaningful brain signal (Abbasi
et al., 2016). Therefore, MEG-DBS recordings require careful analysis of
the affected frequency ranges (Cao et al., 2015) and currently resorts to
qualitative judgements as to which signal aspects are physiological
versus artifact. In particular, quantification of the similarity of neural
signal acquired during DBS (DBS-on) and when the DBS stimulator is off
(DBS-off) using MEG after artifact rejection has not been done to confirm
the utility of various artifact rejection techniques. Previous work exam-
ining artifact suppression in MEG has largely relied on paradigms that
may be affected by DBS, like motor tasks or resting state. This makes
comparisons of artifact suppression between DBS-on and DBS-off difficult
because it is ambiguous whether differences seen between those condi-
tions are due to differences in neural activity between conditions or
differences in residual artifact. It is critical to examine if the neural sig-
nals are comparable across the DBS-on and DBS-off conditions for a task
that should be relatively unaffected by the stimulation to ensure that
differences are not due to differences in the residual artifact. Studies that
have investigated the comparability between DBS-on and DBS-off MEG
data in a paradigm that was not expected to be affected by DBS stimu-
lation, like visual stimulation, did not quantitatively assess the similarity
between signals obtained in the two conditions (Abbasi et al., 2016).
These quantitative analyses are necessary to confirm the utility of MEG
for studying the neural basis of therapeutic effects and side effects of DBS.
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The aim of this study was to quantitatively assess MEG data collected
from patients with DBS implants for the treatment of Parkinson's disease
during a visual categorization paradigm. Because previous studies have
demonstrated that object recognition is intact in movement disorders
(Weil et al., 2016), even in advanced Parkinson's with visual hallucina-
tions (Meppelink et al., 2008), it is likely that the neural responses
evoked during this task are not be influenced by DBS. Statistical
machine-learning was used to classify the spatiotemporal patterns of
visually evoked fields in MEG sensor space acquired during DBS-on and
DBS-off conditions. Machine learning allows us to quantitatively
compare the degree to which spatiotemporal patterns of neural activity
were resistant to DBS associated artifacts and artifact suppression tech-
niques across these conditions on a single trial basis without relying on
qualitative judgements. By comparing the time-course of classification
between DBS-on and DBS-off, as well as applying a classifier trained on
the spatiotemporal activity evoked during DBS-on trials to classify the
spatiotemporal activity evoked during DBS-off trials and vice versa, we
can quantify the spatiotemporal similarity of DBS-on versus DBS-off
conditions for a task that should be unaffected by DBS. Also, by
applying the same technique to data acquired from healthy controls
without DBS implants we can assess if classification performance is
similar to a normative population.

Signal processing techniques like SSP, band-pass filtering, tSSS, and
dimensionality reduction with principal component analysis greatly
improved the accuracy of classifiers in both the DBS-on and DBS-off
conditions. These preprocessing techniques were chosen for evaluation
due to their ease of implementation and reported efficacy (Gross et al.,
2013). The performance of classifiers trained to categorize trials of
different visual-object categories in both the DBS-on and off conditions
was similar to that of classifiers trained on data from healthy controls.
This suggests that, with artifact rejection, physiologically relevant MEG
data can be salvaged fromDBS artifacts. Further, classifiers trained on the
spatiotemporal patterns evoked during trials from the DBS-on condition
and tested on the DBS-off condition and vice versa performed compa-
rably to those trained and tested on the same trial condition. This sug-
gests that the spatiotemporal neural signatures of visual-object
perception are highly similar across DBS-on and DBS-off conditions after
artifact suppression. These results provide quantitative evidence that
signal processing techniques are effective at salvaging physiologically
relevant MEG signals and confirms that MEG is a reliable and potentially
powerful modality for investigation of whole-brain effects of DBS.

2. Methods

2.1. Subjects

Subjects were eight patients with bilateral DBS implants for the
treatment of Parkinson's disease, and 9 healthy controls all of which gave
informed consent to participate under protocols approved by the Uni-
versity of Pittsburgh Institutional Review Board. Demographic informa-
tion and stimulation parameters of patients are presented in Table 1. All
subjects had implants in either the subthalamic nucleus (STN) or globus
pallidus internus (GPi). Stimulation parameters are bilateral unless
denoted with left (L) and right (R) designations. Healthy controls were 6
females and 4 males from 19 to 36 years old.

2.2. Experimental paradigm

Eight patients with bilateral DBS implants for the treatment of Par-
kinson's disease were seated upright and presented with pictures of faces,
words, houses, and phase-scrambled faces via a screen 1m in front of
them. Stimuli occupied approximately 10� 10� of visual angle and were
delivered via custom scripted Psychtoolbox code (Brainard, 1997).
Stimuli were shown for 900ms with a random 1.5–1.9 s inter-trial in-
terval. Patients were asked to respond if an image was presented twice in
a row, which occurred with a probability of 1/10. These repeat trials



Table 1
Patient demographic information.

Patient ID Age Gender Handed-ness Location Stimulation Frequency Voltage Pulse Width

P1 61 M R STN 180Hz (L) 3.3 V, (R) 2.7 V (L) 60 μs (R) 90 μs
P2 72 F R STN 130Hz (L) 2.4 V, (R) 1.6 V 60 μs
P3 78 M R STN 160 Hz (L) 1.0 V, (R) 2.8 V 60 μs
P4 67 M L STN 160 Hz (L) 1.5 V, (R) 1.7 V 60 μs
P5 69 M R GPi 130 Hz (L) 2.9 V, (R) 3.0 V 60 μs
P6 71 M R STN 160 Hz (L) 3.4 V, (R) 0.0 V 60 μs
P7 69 F R STN 130 Hz (L) 2.1 V, (R) 2.1 V 60 μs
P8 61 M R STN 160 Hz (L) 4.3 V, (R) 1.9 V 60 μs
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were not included in the subsequent analysis. Four blocks of trials were
conducted with DBS-on then four blocks of trials with DBS-off yielded
120 trials per stimulus category for both conditions.

To compare results obtained from patients with DBS implants to
healthy controls, we ran similar analyses on data collected from 9 healthy
controls for the purpose of a different experiment (unpublished). The
experimental paradigm was similar across patients and controls except
that healthy controls viewed pictures of faces, hammers, houses, and
phase-scrambled faces which repeated twice in a row 1/6 of the time. The
task was broken into three blocks yielding the same number of stimulus
repetitions per category and stimuli were only left on the screen for
300ms. Longer stimulus presentation was used for DBS patients because
they found 300ms to be too fast.

2.3. Data collection and preprocessing

Data were collected from 204 gradiometers and 102 magnetometers
arranged in orthogonal triplets on an Elekta Neuromag Vectorview MEG
system (Elekta Oy, Helsinki, Finland). Data were sampled at 1000Hz.
Head position indicators were used to continuously monitor head posi-
tion during MEG data acquisition.

MEG data preprocessing steps were chosen due to their ease of
implementation and reported efficacy (Gross et al., 2013), while
achieving robust artifact suppression. Signal-space projection (SSP)
(Tesche et al., 1995; Uusitalo and Ilmoniemi, 1997) was performed on
MEG data using operators that were tailored based on empty room data
to eliminate environmental artifacts. Data were subsequently band-pass
filtered from 1 to 50Hz using default MNE-C filter parameters: 5 Hz
low-pass transition band, 3-sample high-pass transition band, and 8917
sample filter length (Gramfort et al., 2014). Subsequently, data were
down-sampled to 250Hz, then processed via temporal signal space sep-
aration [tSSS] (Taulu and Hari, 2009; Taulu and Simola, 2006) using
Elekta's MaxFilter software (Elekta Oy, Helsinki, Finland), with 10-s
buffer length and correlation limit of 0.98. Data was then epoched into
1500ms trials from �250 to 1250ms around stimulus presentation.
Fig. 1 illustrates this processing pipeline. Performance of multivariate
classifiers applied to each of these preprocessing stages is presented in
Results.
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2.4. Multivariate spatio-temporal pattern analysis

Multivariate spatio-temporal pattern analysis was used to assess the
amount of information regarding stimulus identity was contained within
the stimulus evoked magnetic fields. Multivariate classification methods
have been shown to be more sensitive to these stimulus evoked changes
than classical univariate methods, because they integrate information
across many sensors and timepoints unlike univariate methods (Haxby
et al., 2014). This technique was applied to the 306 MEG sensors at
100ms sliding time windows with a time-step of 12ms.

Specifically, data was first partitioned for 3-fold cross-validation to
ensure independent training and testing of the classifiers, this low
number of cross-folds was chosen because visually-evoked categorical
information has been shown to be robust in healthy controls (Cichy et al.,
2014), therefore a relatively small training set should be sufficient to
capture these statistical regularities. A higher number of cross-folds,
which would allow for higher number of training trials at the expense
of computation time, was not necessary. In analyses involving
principle-component analysis (PCA), this procedure was applied to the
entire time-course of training data to reduce the effective number of
sensors and produce orthogonal components explaining 99% of the total
variance. This procedure reduces the dimensionality of the data which
helps reduce over-fitting of the classifiers (Hughes, 1968) and can help
suppress small sources of noise. PCA was applied independently during
each training cross-fold and participant. Therefore, it is not assumed that
the PCA coefficients are stable across participants.

Four-way L2-regularized logistic regression was then applied inde-
pendently to each 100ms time window via LIBLINEAR (Fan et al., 2008).
All results are reported in terms of the first time-point of this 100ms
window. This particular classifier was chosen because logistic regression
is relatively simple to employ in future studies and L2-regularization of
this classifier helps prevent data overfitting by favoring feature weights
that are close to zero (Ng, 2004). The goal of the classifier is to predict
which stimulus category (face, word, house or phase-scrambled face) the
participant is viewing given the spatiotemporal MEG data. Since each
category was presented an equal number of times, random guesses would
result in a chance accuracy of 25%. The average decoding accuracy
across these three folds are reported across time. Cross-decoding analyses
involve predicting stimulus categories learned using data solely from
trials where the DBS stimulator is on and applying that to trials where the
DBS stimulator is off and vice versa. In these analyses the data was not
Fig. 1. MEG preprocessing pipeline. Data
collected during trials with DBS stimulation
and without DBS stimulation were pre-
processed using SSP, 1–50 Hz band-pass fil-
ters and tSSS. After each step, multivariate
pattern analysis was used to determine the
amount of visually evoked information could
be extracted from the signal. After applying
tSSS, the additional utility of PCA was tested
to determine if dimensionality reduction
improved classification accuracy. Data
collected from healthy controls were pre-
processed identically.
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partitioned into cross-folds.

2.5. Statistics

Above chance classification performance across patients or healthy
controls was determined using nonparametric permutation tests (Maris
and Oostenveld, 2007). This procedure involved subtracting the chance
classification accuracy (25%) then randomly flipping the sign of a subset
of participant classification time courses. Next, a t-test was performed to
compare the permuted group accuracy to zero. T-statistics of clusters of
timepoints with an uncorrected p-value less than 0.01 were summed over
(cluster forming threshold). Minimum and maximum cluster t-values
were stored for all possible combinations of sign flips and compared to
those derived from the true classification time courses to calculate cor-
rected p-values.

Difference in classification accuracy between DBS-on versus DBS-off
conditions was also determined via non-parametric permutation tests.
Classification time course condition labels (DBS-on versus DBS-off) were
randomly assigned for each subject and a t-test was performed across
subjects to compute the difference in permuted time courses. T-statistics
of clusters of timepoints with an uncorrected p-value less than 0.01 were
summed over (cluster forming threshold). Minimum and maximum
cluster t-values were stored for all possible combinations of sign flips and
compared to those derived from the true comparison of DBS-on versus off
classification time courses to calculate corrected p-values.

Above chance classification accuracy for individual patients was
determined by randomly shuffling category labels 1,000,000 times and
performing random guess classification. This allowed us to determine a
global null distribution from which we calculated the p< 0.001 uncor-
rected chance level, or p< 0.05 Bonferroni corrected chance level for
both classification accuracy and d’ sensitivity. Finally, to compare the
difference of peak classification accuracy across different levels of pre-
processing, paired t-test were conducted for the peak accuracies with
Bonferroni correction of p-values across multiple temporal comparisons.

3. Results

L2-regularized logistic regression was used to determine the fidelity
of category-specific MEG signals evoked by pictures of words, faces,
houses and phase-scrambled faces during active DBS stimulation (DBS-
on) and while the stimulator was inactive (DBS-off). Four-way classifiers
were used to predict category-level visual information after applying
Fig. 2. Average decoding accuracy across all subjects for DBS-on and DBS-off trials
levels, i.e. PCA results were also preprocessed with tSSS, filtering, and SSP. Accurac
accuracy across DBS-on trials after applying SSP, band-pass filtering from 1 to 50 H
timepoints with above chance classification accuracy (p< 0.05, corrected) are indic
Decoding accuracy across DBS-off trials for the same four levels of preprocessing.
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artifact rejection techniques including signal-space projection (SSP),
band-pass filtering, temporal signal space separation [tSSS] and dimen-
sionality reduction with principal component analysis (PCA). Above-
chance decoding accuracy at the cluster level was not obtained when
training classifiers on data preprocessed with only SSP to remove sources
of environmental noise in the shielded room (DBS-on max mean-
�standard error: 28.49�2.1% at 260ms, DBS-off max mean�standard
error: 27.93�0.93% at 236ms). However, after band pass filtering the
MEG data from 1 to 50Hz there was a modest ability to decode the four
object categories (DBS-on max mean�standard error: 44.69�5.83% at
212ms, DBS-off max mean�standard error: 36.34�2.87% at 200ms;
Fig. 2A and B, respectively). Timepoints between from 152 to 248ms
were significant at the cluster level for DBS-off data (p< 0.05). Although
DBS-on decoding tended to be more accurate on average, there was no
significant difference between the decoding accuracy obtained from DBS-
on versus DBS-off trials at the p< 0.05 cluster level after processing the
data with a 1–50 Hz band-pass filter and SSP (Fig. 3).

Temporal signal space separation (tSSS) applied to the band-pass
filtered data improved decoding accuracy in both the DBS-on (max
mean�standard error: 64.90�5.82% at 236ms) and DBS-off conditions
(max mean�standard error: 60.07�6.54% at 236ms; Fig. 2A and B,
respectively). Several clusters of time points from 100 to 650ms were
classified significantly above chance for both DBS-on and DBS-off trials.
The decoding accuracy obtained on tSSS preprocessed data relative to
that obtained from data processed with only a 1–50 Hz band-pass filter
and SSP was not statistically significant at the Bonferroni corrected level.
However, this relationship was trending (DBS-on: t(7)> 2.90, p< 0.01,
uncorrected from 164 to 344ms, DBS-off: t(7)> 3.62, p< 0.01, uncor-
rected from 104 to 308ms). At this level of preprocessing, a cluster of
timepoints from 1112 to 1136ms was significantly different between
DBS-on and DBS-off trials at the p< 0.05 cluster level (Fig. 3).

Dimensionality reduction of the tSSS preprocessed MEG sensor data
with PCA further improved classification accuracy in both the DBS-on
(max mean�standard error: 71.20�6.61% at 236ms) and DBS-off con-
ditions (max mean�standard error: 66.48�7.33% at 224ms; Fig. 2A and
B, respectively). For DBS-on and DBS-off trials, this was not a significant
improvement in peak classification relative to trials processed with SSP,
1–50 Hz band-pass filter, and tSSS. Testing individual subject decoding
accuracies at this level of preprocessing revealed decoding accuracies
above chance at the p< 0.05, Bonferroni corrected level for all eight
subjects in both DBS-on and DBS-off trials (Fig. 4). After correcting for
multiple comparisons in time, there was no significant difference at the
at four different levels of preprocessing. Each level of processing includes lower
y is reported at the first time point of the 100ms sliding window. A) Decoding
z, applying tSSS, and reducing the data dimensionality with PCA. Clusters of
ated below each curve. Error bars represent standard error across subjects. B)



Fig. 3. Average decoding accuracy across patients during
DBS-on and DBS-off trials at each preprocessing level. Each
level of processing includes lower levels, i.e. PCA results were
also preprocessed with tSSS, filtering, and SSP. Curves are
identical to those in Fig. 2 but pictured to allow for easier
comparison across DBS-on and DBS-off conditions. Black dots
under the curves indicate clusters of timepoints that are
significantly different across the two conditions (p< 0.05,
corrected). Error bars represent standard error across sub-
jects. The only significant cluster was found after pre-
processing with tSSS from 1112 to 1136ms, during which
DBS-on trials were classified more reliably than DBS-off
trials.

Fig. 4. Decoding accuracy of four-way L2 regularized logistic regression classifier for all eight participants in both DBS-on and DBS-off blocks. Data was preprocessed
with SSP, 1–50 Hz band-pass filter, tSSS, and PCA. Grey dotted line represents Bonferroni corrected threshold for p< 0.05 four-way decoding accuracy.
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cluster level between DBS-on versus DBS-off trials at this level of pro-
cessing although DBS-on trials were classified slightly more reliably
(Fig. 3). Because tSSS in combination with PCA performed the best, all
further analyses were conducted at this level of preprocessing.

To compare the amount of physiologically relevant brain information
contained in the MEG data across patients with DBS implants and healthy
controls we ran the same preprocessing pipeline on healthy control data
collected from a similar experiment (see Methods). Classification accu-
racy during the first 300ms of the trial, when the stimulus was present in
both DBS and healthy control paradigms, was not significantly different
from one another (Fig. 5B). However, decoding of healthy control data
from 524 to 584ms was significantly greater than decoding of DBS pa-
tient data (p< 0.05, corrected), which we speculate is due to the
response to the offset of the stimulus in the healthy control paradigm that
did not coincide with the offset of the stimulus in the DBS paradigm
(300ms offset in the healthy controls, 900ms offset in DBS). A similar
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difference manifested at the offset of the stimulus in the DBS patient
experiment, where DBS patient data was classified with significantly
higher accuracy than healthy control data from 1028ms to 1232ms
(p< 0.01, corrected). To determine if data collected from healthy con-
trols benefitted from artifact suppression with tSSS like the data collected
from DBS patients, we compared the decoding time course of healthy
control data at each step of the preprocessing (Fig. 6). Filtering the
healthy control data greatly improved decoding accuracy, whereas the
remaining preprocessing steps did not significantly improve decoding
accuracy, unlike the DBS data (Fig. 2). The sharp rise for the unfiltered
data around 100ms versus the more gradual and earlier rise in the
filtered data are likely to be artifacts of using a non-causal filter for the
band pass; e.g. the shallow rise in decoding accuracy prior to 100ms in
the filtered, tSSS, and PCA results is not likely to be a result of improved
sensitivity and instead is likely a result of a filter artifact that could be
overcome by using a causal filter or lower high pass threshold (Acunzo



Fig. 5. Decoding preprocessed MEG signals from DBS patients and healthy controls. A) Decoding accuracy for data preprocessed at the highest level (SSP, 1–50 Hz
band-pass filter, tSSS, and PCA) across DBS-on, DBS-off, and cross-decoding. Cross-decoding refers to training a classifier solely on data collected from the DBS-on trials
than testing on the DBS-off trials (trained on DBS-on) and vice-versa (trained on DBS-off). Clusters of timepoints with above chance classification accuracy (p< 0.05,
corrected) are indicated below each curve. Error bars represent standard error across subjects. B) Average decoding of DBS-on and DBS-off trials compared with that of
healthy controls. Clusters of timepoints significantly different between the curves (p< 0.05, corrected) are indicated with black dots. Stimuli were removed from the
screen at 300ms in controls but left on for 900ms in DBS patients for their comfort (see Methods). The second peaks of decoding across the groups are likely to be the
offset response and therefore different due to the different image removal times.

Fig. 6. Average decoding accuracy of healthy control data preprocessed with
the same pipeline as the DBS patient data (Fig. 2). Each level of processing in-
cludes lower levels, i.e. PCA results were also preprocessed with tSSS, filtering,
and SSP. Accuracy is reported at the first time point of the 100ms sliding
window. Clusters of timepoints with above chance classification accuracy
(p< 0.05, corrected) are indicated below each curve. Error bars represent
standard error across subjects.
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et al., 2012; Rousselet, 2012).
Next, to assess the similarity between the spatiotemporal patterns

evoked from the visual object categories during DBS-on and DBS-off
trials, classifiers were trained on the spatiotemporal patterns of MEG
sensor data evoked during DBS-on trials and tested on DBS-off trials and
vice versa. These classifiers also performed significantly above chance
(max mean�standard error: 60.07�6.07% at 224ms for classifiers
trained on DBS-off data and max mean�standard error: 59.27�6.91% at
224ms for classifiers trained on DBS-on data, Fig. 5A). Notably, this
decoding accuracy was not significantly different from those derived
from DBS-off trials at the p< 0.05 cluster corrected level, although this
relationship was trending (t(7)> 3.69, p< 0.01, uncorrected from 200 to
248ms). This shows that, for the most part, spatiotemporal patterns of
visually evoked neural activity were preserved across DBS-on versus off
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trials. This was supported when looking at sensitivity indices of all object
categories in the DBS-on versus DBS-off conditions (Fig. 7). Across DBS-
on and DBS-off classifiers, object categories demonstrated very similar
relative sensitivities. This conservation of relative decoding among object
categories suggests that no one object category was overly affected by
DBS-induced artifacts relative to others.

4. Discussion

The results presented here provide quantitative evidence for the
utility of MEG preprocessing strategies in removing magnetic artifacts
induced by DBS and the associated hardware while sparing dynamic
neural activity in tasks that should be unaffected by the stimulation. A
combination of band-pass filtering, SSP, tSSS and dimensionality reduc-
tion with PCA allowed for the highest classification accuracy, which was
above chance for eight out of eight of our tested patients. Further, by
demonstrating the generalizability of classifiers trained on the spatio-
temporal patterns of MEG data evoked during trials with active DBS and
tested on trials where the stimulator was inactive and vice versa, we were
able to confirm that the spatiotemporal dynamics of the neural signals
was comparable across the DBS-on and DBS-off conditions. Additionally,
classification accuracy and time-course were similar between patients
with DBS implants and healthy controls.

Without applying any level of signal preprocessing, besides SSP to
remove environmental artifacts, reliable decoding accuracy was not ob-
tained with classifiers trained on either DBS-on or DBS-off data. It is
possible that the SSP method may be useful for removing DBS artifacts if
the SSP operators are updated to specifically tailored to the DBS re-
cordings, however using these operators to just remove environmental
noise leaves the signal too contaminated by artifact for accurate classi-
fication. After preprocessing with a 1–50Hz band-pass filter, we were
able to achieve modest classification of the visual categories across the
group. Therefore, it is likely that band-pass filtering helps suppress the
artifactual components of the frequency spectrum that result from the
DBS-stimulation and the associated hardware. Next, the application of
tSSS, which been previously shown to effectively suppress magnetic ar-
tifacts within the limits of the band-pass filter (M€akel€a et al., 2007),
especially those associated with movement of the DBS hardware, further
increased the performance of our classifiers. The importance of tSSS for



Fig. 7. Average D0 sensitivity for all four object categories across subjects in the category localizer task at highest level of preprocessing (SSP, 1–50 Hz band-pass filter,
tSSS, and PCA). Error bars represent standard error from the mean across subjects.
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removing the DBS artifact is supported by the fact that data collected
from healthy controls achieved similar decoding accuracy before and
after preprocessing with tSSS, since there was no DBS hardware associ-
ated artifacts in this data, thus it was only beneficial in the presence of
DBS artifacts.

Finally, PCA reduces the rich spatiotemporal pattern of the visual
response into a lower rank representation by finding orthogonal bases
that capture the most variance in the data. These bases are in no way
related to their physical significance. Therefore, in order to perform
group-level analyses on this data it would have to be projected back
through PCA operators into source space, which could then be matched
across subjects, or group-level analysis could be done through a multi-set
PCA approach to project into a common eigenspace. Given that the visual
responses of interest are a large component of the MEG signal, this
orthogonal basis faithfully captured this aspect of the signal, while dis-
carding components that capture less of the signal variance, likely
reducing noise and classifier over-fitting (Hughes, 1968). This ultimately
led to similar classifier performance across DBS patients and healthy
control participants, illustrating the efficacy of this combination of pre-
processing techniques. In controls, little advantage was seen for tSSS or
PCA, suggesting that these may only be useful when unusual artifacts are
present, such as those from DBS, and not more broadly useful in the
context of MEG decoding studies. Careful analysis of these specific pre-
processing stages and their impact on data quality is necessary to ensure
their applicability to other types of analysis, i.e. time-frequency decom-
position, and cognitive domains, i.e. motor tasks.

We acknowledge that age differences between DBS patients and
healthy controls is a potential confound in this analysis, as is the differ-
ence in presentation duration of the stimuli. It is possible that similar
classification accuracies derived from these groups is the result of
interacting effects. DBS-induced detriments to signal quality could be
canceled by increased discriminability of the object categories in older
relative to younger adults or by longer image presentation times in DBS
patients relative to healthy controls. However, the time course of
decoding between DBS patients and healthy controls was similar during
the first 300ms of the response when the stimulus was on for both
groups. Further, it has been shown using fMRI that ventral visual stream
representations of different object categories become more similar to one
another with age (Park et al., 2004). Therefore, we consider this expla-
nation unlikely and suggest that the results indicate that, after artifact
removal, the data is comparable between controls and patients with DBS
artifacts.

Despite the potential applications of MEG in DBS research, one
methodological note for future DBS studies using MEG is that the DBS
stimulator hardware initially interfered with head position indicator
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(HPI) coils when the HPI coils were at their default setting across both
DBS-on and DBS-off conditions. This made accurate head localization and
subsequent source localization impossible. Thus, the frequency of the HPI
coils should be adjusted to a frequency that is uninfluenced by the DBS
stimulator. Even with this adjustment of the HPI coil frequency, we found
that continuous head localization for movement correction was not al-
ways possible. In the future, it may be helpful to high pass filter the data
to suppress movement related artifacts prior to attempting this
correction.

Given that the wires extending from the DBS implant to the battery
pack generate large magnetic fields during patient movement, movement
artifacts are exacerbated by the DBS hardware. Indeed, the fact that the
DBS-on and DBS-off data appear to be similar even before artifact
removal suggests that the main artifact in these data are a result of the
presence of the DBS hardware, not the stimulation per se. An important
potential caveat for studies where headmotion, and DBS artifacts that are
exacerbated by head motion, is that head movement artifacts may still be
an issue even after the artifact removal procedure described here.
Therefore, patients which are unable to keep still during the MEG tasks
should likely be excluded from studies, which may bias the population of
patients that are able to be covered in DBS-MEG studies, particularly for
movement disorders research.

In addition to these considerations, it is important for future studies to
continue to carefully examine the feasibility of isolating artifactual DBS
components from DBS-induced physiological changes. For example, the
current study did not address the feasibility of removing response-related
movement artifacts from physiological changes in motor related fields,
an important next step in realizing MEG's utility for understanding the
therapeutic effects of DBS during movement. Although previous studies,
including this one, have demonstrated the utility of tSSS for suppressing
DBS artifacts induced by respiration or sporadic movements (Airaksinen
et al., 2011; Connolly et al., 2012; M€akel€a et al., 2007; Park et al., 2009),
it has not been demonstrated in the context where movement is sys-
tematically related to the neural response of interest. For example, it
remains unclear whether one can compare the event related fields evoked
by even small cued motor movements with and without DBS stimulation.
Doing so will both be important and challenging because it will be
difficult to assess whether any differences between DBS-on and DBS-off
are due to neural differences when performing the task or due to resid-
ual differences in artifacts that may be accentuated by differences in
movement. In addition, the paradigm used here, cross-classification of
data for an incidental task, could provide a useful platform for validating
and comparing across different artifact removal schemes, for example
comparing the pipeline described here to others that have been previ-
ously described (Gramfort et al., 2013; Gross et al., 2013).
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The results of this study validate MEG as a viable tool to study the
cortical consequences of DBS in humans and open up critical new ave-
nues of research for understanding the neuroscientific mechanisms of
DBS and for potential clinical and translational work to improve the ef-
ficacy of DBS. For example, intraoperative recordings suggest that DBS
modulates aberrant spectral power components in the beta frequency
range and beta band synchrony between cortical and subcortical motor
systems (de Hemptinne et al., 2015; Kondylis et al., 2016). MEG can be
used to examine the chronic effects of DBS on cortical beta rhythms both
in and outside of the motor system. Resting-state MEG comparing DBS-on
with DBS-off can be used to assess connectome-level effects of DBS when
analyzed using graph theoretical measures. How these network-level
modulations relate to clinically significant therapeutic effects and side
effects can inform the development of neural biomarkers for assessing
treatment response (e.g. evidence for engagement of the therapeutic
target). Using MEG to assess both therapeutic target engagement and the
neural correlates of undesirable side effects has the potential to not only
inform our understanding of DBS for Parkinson's disease and movement
disorders, but also could provide a framework for using MEG as a critical
tool in studies aimed at expanding the utility of DBS to other neurological
and psychiatric disorders.

One potentially impactful avenue for future research is to use MEG to
validate recently developed models which predict the effects of different
DBS parameters. These models have been developed using subject-
specific anatomical information and DBS localization in conjunction
with neurophysiological parameters to estimate the volume of tissue
affected, and the cortical regions modulated, by DBS. These models es-
timate the differential effects expected with different stimulation pa-
rameters, such as stimulating different leads on the DBS electrode or
stimulating with different frequencies or intensities (Butson et al., 2011;
Chaturvedi et al., 2010). MEG can be used to help validate these models
and ultimately could lead to a quantitative, evidence-based approach for
DBS stimulator programming that is both standardized and personalized.

Given recent evidence for the high sensitivity and fidelity in localizing
cognitive effects with MEG (Boring et al., 2018), the results presented
here strongly suggest that MEG is a reliable and potentially powerful tool
for assessing the cortical neurophysiological effects of DBS on non-motor
behaviors, at least in patients without a strong resting tremor. Motor
behavior assessments may be feasible if great care is taken to reduce
movement, for example by using a custom head cast. In conclusion, this
study validates the efficacy of artifact removal algorithms in cleansing
MEG data contaminated with DBS artifact and sets the stage for future
studies to examine the therapeutic and side effects of DBS.
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