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In this study, we investigated the cognitive processing stages underlying associative recognition usingMEG. Over
the last four decades, a model of associative recognition has been developed in the ACT-R cognitive architecture.
Thismodelwas first exclusively based on behavior, butwas later evaluated and improved based on fMRI and EEG
data. Unfortunately, the limited spatial resolution of EEG and the limited temporal resolution of fMRI havemade
it difficult to fully understand the spatiotemporal dynamics of associative recognition.We therefore conducted an
associative recognition experiment with MEG, which combines excellent temporal resolution with reasonable
spatial resolution. To analyze the data, we applied non-parametric cluster analyses and a multivariate classifier.
This resulted in a detailed spatio-temporalmodel of associative recognition. After the visual encoding of the stim-
uli in occipital regions, three separable memory processes took place: a familiarity process (temporal cortex), a
recollection process (temporal cortex and supramarginal gyrus), and a representational process (dorsolateral
prefrontal cortex). A late decision process (superior parietal cortex) then acted upon the recollected information
represented in the prefrontal cortex, culminating in a late response process (motor cortex). We conclude that
existing theories of associative recognition, including the ACT-R model, should be adapted to include these
processes.
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Introduction

Associative recognition is the important ability to recognize that two
events occurred at the same time, and might therefore be related. To
investigate associative recognition memory, subjects are typically first
asked to study pairs of words or other items, and later tested onwheth-
er two items were presented as a pair or not. Thus, associative recogni-
tion does not only involve judging whether an item was encountered
before (recognition), but also whether it was encountered together
with a specific other item (association).

Over the last four decades, an influential model of associative mem-
orywas developed, culminating in a computational simulationmodel in
the cognitive architecture ACT-R (adaptive control of thought-rational;
e.g., Anderson and Bower, 1973; Anderson, 1983; Anderson and
Reder, 1999; Schneider and Anderson, 2012). This model was first
based on behavioral data alone, but since 2003 it has also been evaluat-
ed and constrained by fMRI data (Danker et al., 2008; Sohn et al., 2005,
2003). The drawback of both behavior and fMRI is that they provide a
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single, aggregate measure of associative recognition (a single response
or a single scan). This contrasts with the detailed ACT-R model that
assumes cognitive steps in the order of 50 ms.

To improve our understanding of how associative recognition
unfolds over time, we recently conducted an EEG experiment (Borst
et al., 2013). The EEG data – with their high temporal resolution – sug-
gested several changes to the model: whereas the original model as-
sumed a single memory process and a brief decision stage, the EEG
analyses provided evidence for two different memory processes and
suggested a more complex decision process (Anderson et al., 2016;
Borst and Anderson, 2015a). Unfortunately, the spatial resolution of
the EEG setupwas too coarse to localize cognitive processes in the brain.

In the current study we therefore conducted a MEG (magnetoen-
cephalography) experiment of associative recognition. The combination
of MEG's excellent temporal resolution (1 kHz) and reasonable spatial
resolution (in the order of 1 cm; Hansen et al., 2010) should ground
the model at a much finer scale in the brain, both temporally as well
as spatially. We analyzed the MEG data with two complementary tech-
niques: a traditional mass-univariate analysis, controlling for multiple
comparisons by means of a non-parametric cluster analysis (Maris
and Oostenveld, 2007), and a multivariate machine-learning classifier
(e.g., Ghuman et al., 2014; Hirshorn et al., 2016; Pereira et al., 2009;
Sudre et al., 2012).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2016.08.002&domain=pdf
http://dx.doi.org/10.1016/j.neuroimage.2016.08.002
mailto:ja+cmu.edu
http://dx.doi.org/10.1016/j.neuroimage.2016.08.002
http://www.sciencedirect.com/science/journal/10538119
www.elsevier.com/locate/ynimg


417J.P. Borst et al. / NeuroImage 141 (2016) 416–430
In the remainder of this introduction,wewill briefly discuss theories
of associative recognition and the ACT-R model, followed by a descrip-
tion of the current study.

Theories on associative recognition

To account for single-item recognition memory, two classes of
theories have been developed: single- and dual-process theories. Both
classes have later been extended to explain associative memory (for re-
views, see Diana et al., 2006;Malmberg, 2008;Wixted, 2007; Yonelinas,
2002). Single-process theories assume a single memory stage between
perception and response, whereas dual-process theories assume two
different memory stages.

Single-process theories are known as ‘global matching’ or ‘signal
detection’ models (e.g., Gillund and Shiffrin, 1984; Hintzman, 1988;
Malmberg, 2008; Murdock, 1993; Wixted, 2007; Wixted and Stretch,
2004). In these models, a ‘compound cue’ that contains both to-be-
judged items is compared to all relevant traces in memory. If the
combined similarity to all memory traces exceeds a certain criterion, it
is assumed that the items were studied together. Thus, according to
single-process theories there is only a single memory stage, and no in-
formation content is retrieved during this stage. Rather, a continuous
index of the similarity to all memory traces is retrieved.

In contrast to single-process theories, dual-process theories describe
associative recognition as a combination of two memory processes
(e.g., Diana et al., 2006; Malmberg, 2008; Rugg and Curran, 2007;
Yonelinas, 2002). An early, fast, and automatic familiarity process is sim-
ilar to thematching process described above: it gives a continuous esti-
mate of how familiar an item is. However, this information is typically
assumed to be insufficient to judge associations. For this, a second pro-
cess is required: recollection. This process is slower than the familiarity
process and retrieves qualitative information frommemory – including
associative information. The familiarity and recollection processes have
been related to different ERP components (e.g., Rugg and Curran, 2007).
Familiarity is thought to elicit a negative response between 300 and
500 ms over mid-frontal electrodes, with new items being more
negative than studied items (the FN400 or mid-frontal old/new effect).
Recollection is characterized by a more positive signal for studied items
than for new items between 500 and 800 ms over parietal electrodes
(the parietal old/new effect).

ACT-R model

Unlike the theories described so far, the ACT-R model was directly
developed to account for associative recognition. The model assumes
four major sequential processing stages in associative recognition:
perceptually encoding the items, retrieving a memory trace, making a
decision based on the retrieved memory, and issuing a response
(Fig. 1, top). Thus, like single-process theories it only assumes a single
memory process. However, unlike single-process theories, this memory
process retrieves qualitative information about the content of themem-
ory, and is in that sense comparable to the recollection process of dual-
process theories. TheACT-Rmodel has been used successfully to explain
Fig. 1. Processing stages in the ACT-R model (top) and i
Adapted with permission from Borst & Anderson (2015
latency, accuracy, and fMRI data of associative recognition tasks
(e.g., Anderson and Reder, 1999; Danker et al., 2008; Schneider and
Anderson, 2012; Sohn et al., 2005).

In the associative recognition experiment that we discuss below,
participants were asked to study 32 word pairs in a training phase
(e.g., “JELLY-MOTOR” or “COMFORT-MUSTARD”). In a subsequent test
phase, they were again presented with word pairs, and had to judge
whether they learned these pairs (targets; “JELLY-MOTOR”) or whether
the words were re-arranged (re-paired foils; “JELLY-MUSTARD”). Be-
cause foilswere alternative pairings of the trainedwords, subjects need-
ed to take the associative information of the words into account.

To perform this task, the ACT-R model starts by encoding the word
pair from the screen. Next, it uses the encoded pair to retrieve the best
matching word pair from memory (word pairs are stored as a single
chunk of information in memory during the study phase; see
Anderson and Reder, 1999, for details). In a short decision stage the
model then compares the retrieved word pair to the pair on the screen.
If the pairs match, the model decides that it learned the pair. If they do
not match, the model decides it did not study the pair. Based on the de-
cision, it issues the corresponding response in the final stage. Thus, also
in the case of foils the model makes a retrieval based on the encoded
words. Because the combination of encoded words does not exist in
memory, a word pair containing only one of the words on the screen
is retrieved instead. This pair is compared to the pair on the screen,
which is different and consequently rejected as a target. This recall-to-
reject process is consistent with a wide range of data on associative rec-
ognition (Anderson and Reder, 1999;Malmberg, 2008; Rotello andHeit,
2000; Rotello et al., 2000; Schneider and Anderson, 2012).

The model was implemented as a computational simulation in the
cognitive architecture ACT-R (Anderson, 2007). It can be presented
with the same information as human participants, and will yield reac-
tion times, accuracy, and fMRI predictions that can be compared to
humandata (Borst andAnderson, 2015b; Borst et al., 2015). Two impor-
tant effects in associative recognition data are the target-foil effect and
the effect of associative fan. The target-foil effect refers to the observa-
tion that foil pairs are responded to slower than targets, if foils consist
of the same items as targets,which is the case in the current experiment.
Associative fan refers to the number of other items each word is associ-
ated to in memory, which, in the case of the experiment, is the number
of pairs a word appears in. Pairs consisting of words with a higher asso-
ciative fan are responded to slower than pairs with a lower fan status
(for reviews, see Anderson, 2007; Anderson and Reder, 1999).

The ACT-R model accounts for both effects by means of a spreading
activation mechanism. When issuing the memory retrieval in the asso-
ciative retrieval stage, activation is spread from the encoded words to
the word pairs in memory. In case of targets, both words of a pair in
memory receive spreading activation. However, in the case of foils,
only one of the words of a pair receives activation, because a pair con-
taining both words does not exist in memory. As a result, foil pairs re-
ceive less activation and are retrieved slower than target pairs. The fan
effect is explained in a similar manner: It is assumed that the spreading
activation from the encoded words is a fixed amount, but in case of
higher fan words has to be divided over multiple word pairs. That is, if
n the adapted model of Borst & Anderson (2015a).
a).
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an encoded word occurs in multiple pairs in memory (higher associa-
tive fan), the spreading activation is divided over these pairs. As a result,
pairs with higher-fan words receive less spreading activation, and are
therefore harder to retrieve. For a detailed treatment, including the
underlying equations and quantitative predictions, see Anderson and
Reder (1999) or Schneider and Anderson (2012).

The ACT-Rmodel does not only account for response times and error
rates, but is also able to quantitatively account for fMRI data in several
brain regions (Danker et al., 2008; Sohn et al., 2003, 2005). Most impor-
tantly, a region in the left prefrontal cortex is sensitive to the fan-status
of associative recognition items, with higher-fan items resulting in
greater BOLD activation. In addition, the same region was found to be
more active in response to foils than to targets (Lepage et al., 2003).
This region is thought to reflect retrieval of theword pairs frommemory
(Anderson, 2007; Borst and Anderson, 2015b), as the activity patterns
match the slower retrievals of higher-fan items and foils in the model.

EEG findings

The ACT-R model has been very successful in explaining behavior
and fMRI data (e.g., Anderson and Reder, 1999; Schneider and
Anderson, 2012; Sohn et al., 2005). However, both behavior and fMRI
provide an aggregate measure of the complete associative recognition
process. Recently, we therefore conducted an associative recognition
study with EEG, which can measure the neural processes at a millisec-
ond resolution throughout the recognition process (Borst et al., 2013).
We analyzed the data with traditional methods and with two different
classification approaches (Anderson et al., 2016; Borst and Anderson,
2015b), which resulted in the ‘EEG model’ in Fig. 1 (bottom). In this
model, a familiarity stage begins after some encoding has occurred,
and extends partly into an associative recollection process. The recalled
evidence is maintained for the decision process, and results in a
sustained response whose amplitude is related to the activation of the
memories (Anderson et al., 2016). In addition, the duration of the deci-
sion process depends on the recalled evidence (Borst and Anderson,
2015a).

Thus, in contrast to the original ACT-Rmodel, the EEG analyses indi-
cated the existence of twomemory stages: a familiarity stage and a rec-
ollection stage. In addition, the analyses suggested a complex decision
stage that processed the input from the recollection process to make a
decision, and that is sensitive in duration both to target/foil status as
well as to associative fan.

Current study

With the current study we want to shed more light on the
neurodynamic processing stages of associative recognition and thereby
further evaluate theACT-Rmodel and single- and dual-process theories.
We aim to answer two questions: 1) are there one (ACT-R, single-
process theories), two (EEG model, dual-process theories), or more
memory processes involved in associative recognition, and 2) what is
the nature, timing, and location of these processes?

To answer these questions, we conducted a MEG experiment
consisting of two phases on consecutive days. In the training phase on
day 1, participants were asked to study 32 word pairs. In the test
phase on day 2, participants were again presented with word pairs,
and had to judge whether they learned these pairs in the training
phase or not. To aid the identification of processes involved in associa-
tive recognition, we manipulated four factors in the experiment: word
length, associative fan, probe type, and response hand. Word length
was expected to affect the encoding stage. Although it only has a negli-
gible effect on reading speed (Juhasz and Rayner, 2003; Spinelli et al.,
2005), it is reflected in early occipital signals (85 ms after stimulus
onset) and later prefrontal signals (from 300 ms onwards; Borst et al.,
2013; Hauk and Pulvermüller, 2004; Sudre et al., 2012; Van Petten
and Kutas, 1990). Associative fan was expected to affect the duration
of a retrieval stage, as discussed above. It is known to have a strong
effect on the EEG signal both over prefrontal and parietal cortex (Borst
et al., 2013; Heil et al., 1997; Khader et al., 2007; Nyhus and Curran,
2009). Probe type (targets and re-paired foils) should influence the
decision process. Finally, response hand was varied between blocks
(not between targets and foils), and should therefore be reflected
exclusively in a response process (not in the decision process).

In addition to a univariate analysis, we used a multi-variate
machine-learning classifier to analyze the MEG data and identify
processing stages (e.g., Chan et al., 2011; Das et al., 2010; Pereira et al.,
2009). Traditional univariate analysis methods are based on the
assumption that the relevant information is coded in a single sensor,
source (M/EEG), or voxel (fMRI) or in the average signal of a region,
while it might as well be represented in the activity pattern across mul-
tiple sensors, sources, or voxels (Haynes and Rees, 2006; Norman et al.,
2006). The current analysis was inspired by the work of Sudre and col-
leagues, who investigated where and when certain semantic categories
are represented in the brain (Sudre et al., 2012). For the current study,
we trained a classifier to identify the experimental conditions in
50-ms windows between stimulus and response. The idea is that if the
classifier can distinguish between two conditions in a certain time peri-
od (e.g., left and right hand 100–150 ms before the response), one can
conclude that information regarding response hand is present in the
MEG signal, and consequently that a response process is underway. In
addition, after projecting the MEG signal on the cortical surface
(Gramfort et al., 2014; Hansen et al., 2010), we divided the surface in
68 regions-of-interest (ROIs) and trained the classifier on each region
and each 50-ms time window separately. This results in even more
fine-grained information, where the combination of condition, brain
region, and time window can be used to infer the underlying process.
Method

The experiment consisted of two phases: a training phase in which
subjects learnedword pairs and a test phase inwhich subjects complet-
ed an associative recognition task. The test phasewas scheduled the day
after the training phase and took place in the MEG scanner. During the
test phase subjects had to distinguish between targets and re-paired
foils. Because foils were alternative pairings of the trained words,
subjects needed to take the associative information of the words into
account. Note that words always appeared in the same position of a
pair, irrespective of target or foil status. In addition to probe type (target
or re-paired foil), we manipulated word length (short or long),
associative fan (words had either 1 or 2 associates), and response
hand, resulting in 16 unique conditions. We used structural MRI images
to estimate cortically-constrained minimum norm estimates (MNE;
Gramfort et al., 2014) of the cortical currents underlying the measured
MEG signal.
Subjects

Twenty individuals from the CarnegieMellon University community
completed the experiment. These subjects had performed an fMRI
experiment in our lab previously, and gave permission to use their
structural MRIs from the previous study to aid the MEG analysis. One
subject fell asleep in the MEG scanner, and one performed more than
two standard deviations below themean performance rate (15% errors,
where the other subjects scored on average 6% errors). This left 18
subjects for analysis (6 males and 12 females, ages ranging from 18 to
35 years with a mean age of 23.6 years). All were right-handed and
none reported a history of neurological impairment. Written informed
consent as approved by the Institutional Review Boards at Carnegie
Mellon University and the University of Pittsburgh was obtained before
the experiment. Participants received $65 compensation.



Fig. 2. Trial structure. ITI = inter-trial interval.
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Materials

Word pairs were taken from Borst et al. (2013). For that study, word
pairs were constructed from a pool of 464words selected from theMRC
Psycholinguistic Database (Coltheart, 1981). The words were nouns
with word frequency between 2 and 100 occurrences per million and
a minimum imageability rating of 300. Half of the words were 4 or 5
letters and composed the short word list, which had a mean word
frequency of 24.3 occurrences per million (SD = 22.1), mean
imageability rating of 539.3 (SD = 55.3), and mean word length of 4.5
letters (SD = 0.5). The other half of the words were 7 or 8 letters and
composed the long word list, which had a mean word frequency of
24.4 occurrences per million (SD = 23.4), mean imageability rating of
505.6 (SD = 81.6), and mean word length of 7.2 letters (SD = 0.4).
The 232 words of each length were divided randomly into two lists –
a 24-word study list (which was re-used in the current study) and a
208-word new foil list (which was not used for the current study) –
such that the lists were matched on word frequency, imageability, and
word length according to t-tests (all ps N 0.1). Word frequency was
also matched across the corresponding lists of each length, thereby
avoiding the natural confound between word frequency and length.
Study lists were also constrained such that each word started with a
unique three-letter sequence.

The study listswere used to create two sets of probes: targets and re-
paired foils. A set of 32 targetword pairswas constructed from the study
lists such that there were eight word pairs for each combination of
length (short or long) and fan (1 or 2). Both words in short pairs were
4 or 5 letters and both words in long pairs were 7 or 8 letters. Each
word in a fan-1 pair appeared only in that pair, whereas each word in
a fan-2 pair appeared in two pairs. A corresponding set of 32 foil word
pairs was constructed in a similar manner by recombining words from
different target pairs of the appropriate length and fan. Thus, there
were 8 conditions defined by the probes: probe type (target or re-
paired foil), word length (short or long) and associative fan (1 or 2).
These were combined with response hand to create 16 unique condi-
tions. The randomization of words and their assignment to conditions
were unique for each subject.

MEG recording

MEG data were recorded with a 306-channel Elekta Neuromag
(Elekta Oy) whole-head scanner. The 306 channels are distributed
into 102 sensor triplets, each containing onemagnetometer and two or-
thogonal planar gradiometers. Data were digitized at 1 kHz. As part of
standard MEG testing, four head position indicator (HPI) coils were at-
tached to the subject's scalp to track the position of the head in the
MEG helmet. The position of the HPI coils, three fiducial points (nasion,
left and right pre-auricular), and an additional 30 to 60 scalp surface
points were digitized to aid co-registration of the anatomical MRI and
MEG sensors. In addition, we placed electrodes above, below, and next
to the eyes to measure eye movements and eye blinks (EOG). After
preparation, subjects were seated in a three-layer magnetically-
shielded scanner room. Two response gloves (left and right) were
placed on the table in front of the subjects, and attached to their wrists
with velcro. The stimuli were projected onto a screen about 1m in front
of the subject. Timing accuracy was ensured by measuring stimulus
onsetwith a photodiode thatwas directly connected to theMEG record-
ing system.

Structural MRI

Structural MRIs were obtained during previous experiments in our
lab. The images were acquired on a 3T Verio Scanner using a
32-channel RF head coil and an MPRAGE sequence (TR = 1700 ms,
TE = 2.48 ms, flipangle = 9°, 256 × 256 matrix, FOV =
256 mm × 256 mm, 176 1 mm thick sagittal images).
Procedure

The training and test phase of the experiment were conducted on
consecutive days. In the training phase subjects learned the target
word pairs. The training phase started with each target word pair pre-
sented onscreen (one word above the other) for 5000 ms followed by
a 500-ms blank screen. Subjects were instructed to read each pair and
make an initial effort tomemorize it. Following target presentation, sub-
jects completed a cued recall task designed to help them learn the target
word pairs. On each trial they were presented with a randomly selected
target word and had to recall the word(s) paired with it (two-word re-
sponses were required for fan 2 words). The self-paced responses were
typed and feedback in the formof the correct responsewas provided for
2500 ms following errors. If a target word elicited an error, it was pre-
sented again after all other target words had been presented. A block
of trials concluded when all 48 target words had elicited correct re-
sponses. Subjects completed a total of three blocks of cued recall, and
thus responded correctly three times to each word.

On the secondday, subjects startedwith one additional block of cued
recall to refresh their memories. Afterwards they were prepared for the
scanner and completed the test phase in the scanner (Fig. 2). Each trial
began with a centrally presented fixation cross for a variable duration
sampled from a uniform distribution from 400 to 600ms. Following fix-
ation, a probeword pair appeared onscreen (oneword above the other)
until the subject responded with a keypress to indicate whether the
probe had been studied during the trainingphase. In half the blocks sub-
jects responded with their right hands, in the other half with their left
hands. Left- and right-handed blocks were alternated; half of the sub-
jects started with a right-handed block, the other half with a left-
handed block. Targets required “yes” responses (left or right index fin-
ger) and foils required “no” responses (left or right middle finger). Re-
sponse instructions (including hand) were repeated before each block.
Subjects were instructed to respond quickly and accurately. Following
the response, accuracy feedback was displayed for 1000 ms, after
which a blank screen appeared for 500 ms before the next trial began.

Subjects completed a total of 14 blocks (7 left-handed, 7 right-
handed) with 64 trials per block; each block contained all target and
foil word pairs in random order. All 16 conditions thus occurred equally
often, which resulted in 56 trials per condition during the test phase.

General analysis

For all analyses, except error rate, incorrect trials and trials with re-
sponse times (RTs) longer than 10,000 ms were excluded. In addition,
trials with RTs exceeding 3 SDs from themeanper condition and subject
were excluded. In total, 2.3% of correct trials were removed, leaving on
average 51.7 observations per condition per subject. To investigate
behavioral data we used repeated-measure ANOVAs.

MEG analysis and cortical current estimation

MEG data were visually inspected to reject flat or noisy channels.
Next, the FieldTrip toolbox (Oostenveld et al., 2011) for MATLAB was
used to apply a band-pass filter (0.5–50 Hz) and subsequently down-



1 Matlab code to perform the sensor-based classification can be found on http://www.
jelmerborst.nl/models.

2 We resampled the remaining part of each trial using Matlab's resample function to a
length of 800 ms. To minimize edge effects, we padded the start and end of each interval
before resampling.

3 The procedure is described for the stimulus-and-response-locked data; it was identi-
cal for the separate stimulus-locked and response-locked classifier analyses.
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sample the data to 250 Hz. Eye blinks and saccades were removed by
decomposing the MEG data into independent components with
EEGLAB's (Delorme and Makeig, 2004) independent component analy-
sis (ICA) algorithms as implemented in FieldTrip. Components were au-
tomatically marked for rejection if their correlation with either the
horizontal or vertical EOG recordings was higher than 0.5 and these
marked components were also manually inspected before rejection.
The remaining components were projected back to sensor space. Final-
ly, sensor data were realigned to the average head position of all
subjects.

Stimulus-locked epochs of 1000 ms (including a 200-ms pre-
stimulus baseline) were extracted from the continuous recording and
baseline-corrected using the pre-stimulus interval. Response-locked
epochs of 1000 ms (800 ms pre-response and 200 ms post-response)
were also extracted from the continuous recording to examine
late-occurring effects while controlling for variability in RTs.
Response-locked epochs were baseline-corrected using the 200-ms
pre-stimulus baseline. We excluded incorrect trials and trials with
outliers in RTs as described above. In addition, stimulus- and
response-locked epochs containing sensor-values exceeding 7.5 SDs
from the mean per sensor and subject over all epochs were excluded
from further analysis.

Because themeasuredmagnetic signal does not directly indicate the
location and magnitude of cortical currents, we projected the sensor
data onto the cortical surface using cortically constrained minimum
norm estimates (MNE; Gramfort et al., 2014). The MNE method at-
tempts to find the distribution of currents on the cortical surface with
the minimum overall power that can explain the MEG sensor data. To
this end we first constructed 3D cortical surface models from the
subjects' structural MRIs using FreeSurfer (Dale et al., 1999; Fischl,
2012). These cortical surface models were manually co-registered
with the MEG data on the basis of the recorded fiducials and scalp sur-
face points. Then, 2562 source dipoles were placed on the gray-white
matter boundary of each hemisphere, approximately 6 mm apart, and
a forward operator from these sources was calculated using a single
compartment boundary-element model. A noise-covariance matrix
was computed for each subject from 400 ms to 50 ms before stimulus
presentation on each trial. The noise-covariancematrix and the forward
operator were combined into a linear inverse operator (loose orienta-
tion constraint of 0.1, no depthweighting), which can be used to project
sensor data onto the source dipoles on the cortical surface. The resulting
three components (x, y, z) of each dipole were combined by taking the
square root of the sum of squares, as is common practice in the MNE
analysis method. The inverse operator was used to project the average
stimulus- and response-locked epochs per subject and condition to
the source space. These source estimates were then morphed onto the
standard MNI brain using MNE's surface-based normalization proce-
dure (Gramfort et al., 2014).

To compare conditions and identify time periods and source
locations of interest while controlling for multiple comparisons, we
applied nonparametric cluster-based permutation tests (Maris and
Oostenveld, 2007). First, we contrasted the two levels of each condition
and determined sources with p b 0.01. These sources were clustered
based on time (adjacent time points) and space (Euclidian
distance b 7mm) over the whole brain and the entire 1300ms interval.
Next, t-values in each cluster were summed to create cluster-level
statistics. To derive the empirical null distribution of the cluster-level
statistic, we applied this procedure to 10,000 random permutations of
the data for each condition, in which each condition level was labeled
randomly for each subject (e.g., we calculated averages for long and
short words for each subject, then randomly re-labeled these averages).
The proportion of these permutations with a greater maximum
cluster-level statistic than the cluster-level statistic of the
original, non-permuted data was taken as the p-value for the original
clusters. Clusters with a permutation p-value b 0.05 were considered
significant.
Multivariate classifier

To track processing stages we applied a machine-learning classifier
to the data,1 following the methodology outlined by Sudre et al.
(2012; see also Borst et al., 2013). To determine when certain informa-
tion was present in the MEG signal we divided the sensor data into
50-ms intervals and performed binary classification for each experi-
mental factor (e.g., long and short words) in these intervals. To also de-
termine where the information was processed, we divided the source
estimates into 68 regions-of-interest (ROIs) following the Desikan-
Killiany atlas (Desikan et al., 2006; Freesurfer “aparc” annotation) and
into 50-ms intervals. Again, we performed binary classifications for
each factor in each interval and ROI.

Preparation
The classifier algorithm requires that trials be the same length. The

data were therefore simultaneously stimulus- and response-locked, to
capture effects occurring at both the start and the end of the trials in a
single analysis. To this end, all trials were warped to a length of
1500 ms, composed of three parts: a 200-ms pre-stimulus baseline,
the first 500 ms after stimulus onset, and a warped 800 ms. That is,
we kept the first 500 ms of each trial intact and resampled the remain-
ing data of each trial: the portion of each trial occurring after 500 ms
was “shrunk” or “stretched” to a duration of 800ms.2 This approach pre-
served peaks in the MEG waveforms throughout the trial. This type of
event-locking procedure has also been used to align individual trials of
varying durations in fMRI experiments (Anderson et al., 2008), and
was previously applied to our EEG dataset (Borst et al., 2013). To ensure
that we did not introduce artifacts with this procedure, we additionally
classified separately stimulus-locked and response-locked data. To this
end, we excluded trials shorter than 700 ms, and extracted 900-ms
epochs from the continuous recording (including a 200 ms pre-
stimulus or post-response interval). All data were baseline-corrected
using the 200 ms pre-stimulus intervals.

After stimulus- and response-locking the data, we created classifier
examples by averaging over the 7 presentations of each unique word
pair for left- and right-handed responses for each subject (we averaged
over the presentations to decrease noise; cf. Borst et al., 2013; Sudre
et al., 2012). This resulted in 8 examples for each of the 16 conditions
formed by the factorial combination of fan, word length, probe type,
and response hand, yielding 128 examples in total for each subject.
Given that we used 1500-ms epochs,3 the data were down-sampled to
250 Hz, and data were recorded at 306 sensors, this yielded
376 × 306 = 115,056 features per example, where each feature is a
time point of a sensor. From the examples and features, we created a
128 × 115,056matrix X for each subject. The final step in preprocessing
the datawas normalizing each sensor (over the different examples) inX
to a standard deviation of 1. Each sensor was normalized separately to
prevent channels with higher amplitudes from disproportionately
influencing the classifier results. In addition tomatrixX, we also created
a 128 × 4 matrix Y that contained the labels for the examples. The col-
umns in Y coded fan (fan 1 = −1 and fan 2 = 1), word length
(short =−1 and long= 1), probe (foil =−1 and target = 1), and re-
sponse hand (right = −1, left = 1).

For the source space classification in the ROIs, we projected the 8 ex-
amples (averages of 7 presentations) of each condition onto the cortical
surface as described above. Instead of 306 sensors, this yielded 5124
source estimates per time point, and therefore 376 × 5124 =
1,926,624 features per example. The matrix X measured therefore

http://www.jelmerborst.nl/models
http://www.jelmerborst.nl/models


4 Note that this approach is sub-optimal, because the value of λ is determined on the
same data as the predictions are made, albeit in separate LOOCV-iterations. Thus, the final
test-set is not fully independent of the training set, possibly resulting in over-fitting of the
data. As a solution, one can recompute λ on each iteration of the prediction-LOOCV. We
applied this alternative approach to the MEG sensor data, and showed that the results
are virtually identical (Supplementary Fig. S1). However, as this approach was computa-
tionally infeasible for theMEG source data and the results remained unchanged,wedecid-
ed to use the procedure described in the main text.

Fig. 3. Behavioral results of the training (left), test RT (mid), and test error rate (right). Error bars indicate standard errors. Data were not split out for right and left-handed responses, as
there were no significant differences between response hands in behavior.
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128 × 1,926,624 for each subject. Each source was then normalized
analogously to the sensors before. Note that we performed the classifi-
cation only on subsets of these 1,926,624 features as defined by the
ROIs: the mean size of the ROIs was 67 sources, with 189 sources
being the maximum. Thus, ROI classification was done on a maximum
of 189 × 376 = 71,064 features per example.

Algorithm
To classify the data we used the machine-learning technique ridge

regression (e.g., Hastie et al., 2001). In essence, ridge regression is a
linear regressionmethod that can handle situationswithmany correlat-
ed predictors, as is the case here. Ridge regression learns a mappingŴ
between the n × p example matrix X and the labels Y:

Ŵ¼ XTXþλIp
� �−1

XTY ð1Þ

Ip is the p × p identity matrix and λ is a complexity parameter that
penalizes large coefficients Ŵ. Eq. (1) requires the inversion of a p × p
matrix. Eq. (1) can be rewritten in its dual form:

Ŵ¼XT XXTþλIn
� �−1

Y ð2Þ

in which In is the n × n identitymatrix. The dual form requires the inver-
sion of an n × n matrix rather than a p × p matrix. Given that n = 128
examples and p = 115,056 features per example (maximum) in our
case, the dual form enables the algorithm to run considerably faster.

Ŵ is a p×4matrixwhere each columncontains theweights for oneof
the four labels. These weights can be used to predict classes (e.g., fan 1 or
2) to which new examples belong bymultiplying new examples T byŴ:

Ŷ¼T � Ŵ ð3Þ

Ŷ denotes the classification. In our case, the labels Y were either 1
or −1. Positive Ŷ were interpreted as a 1 classification (fan 2, long,
target, left hand), and negative Ŷ as a −1 classification (fan 1, short,
foil, right hand).

Training and testing the classifier
We trained and tested the classifier separately for each subject. This

involved two steps. First, the best λ (the complexity parameter)was de-
termined separately for each condition (thus, we used a different λ for
each condition). Second, the classifier was evaluated. For both steps
we used leave-one-out cross-validation (LOOCV). That is, we trained
the classifier on 127 examples and used the resultingŴ to classify the
128th example. We repeated this procedure for all examples, yielding
128 scores.

To determine the optimal value for λ, we used LOOCV to minimize
the mean squared prediction error (MSE) separately for each label
(fan, word length, probe type, hand):

MSE¼1
n

X128

i¼1

yi−ŷið Þ2 ð4Þ

where yi is the label for example i and ŷi is the raw classification value
for that example. We searched for a value of λ between 0 and
1,000,000 in the following manner. First, MSEs were calculated for 11
linearly spaced values of λ between 0 and 1,000,000. Next, we
calculated MSEs for 11 linearly spaced points spanning the interval
that contained the value of λ that previously minimized MSE. We
repeated this procedure until the improvement in MSE was smaller
than 0.01. Once the optimal value of λwas determined, we ran the clas-
sifier once more using LOOCV to calculate final prediction accuracy
(percentage of correct classifications), which is reported in the Results
section.4

The sensor-based classifier was first trained on all data between
−200 and 1300 ms to assess how well it could perform given all data.
To determine when the different types of information were processed
in the brain, we subsequently trained and tested the classifier using
50-ms windows. In the case of the source-based ROI classifier, we first
trained on all data (all intervals) in an ROI to determine the neural cor-
relates of the processes of interest. Next, we divided the data in an ROI
into 50-ms intervals to investigate time and location simultaneously.

Results

Behavior

Training phase
Fig. 3, left panel, shows the frequencywithwhich target words were

presented during each block of the cued recall task. The minimum



Fig. 4. Difference in source estimates for long–short words (A), fan 2–fan 1 pairs (B), target–foils (C), and left–right-handed responses (D).
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possible frequency per block –when no errorsweremade – is 1 because
each target word was presented at least once per block. Block 1–3 indi-
cate the blocks during the training phase on the first day of the experi-
ment, Block 4 indicates the additional block of cued recall just before the
test phase in the scanner. A repeated-measures ANOVA indicated that
frequency decreased over blocks, as reflected by a main effect of Block
(F(3,51) = 61.02, p b 0.001, ηp2 = 0.78), and was lower for Fan 1 items
than for fan 2 items (F(1,17) = 48.21, p b 0.001, ηp2 = 0.74). The effect
of fan decreased over blocks, as indicated by a significant interaction
between block and fan (F(3,51) = 39.79, p b 0.001, ηp2 = 0.70). There
were no other effects (all Fs b 1).

Test phase
Themiddle panel of Fig. 3 shows RTs during the test phase, the right

panel error rate. RT was longer and error rate was higher for fan 2 items
compared to fan 1 items (RT: F(1,17) = 67.43, p b 0.001, ηp2 = 0.80;
Error rate: F(1,17)=27.38, p b 0.001, ηp2=0.62), and for Foils compared
to Targets (RT: F(1,17) = 62.94, p b 0.001, ηp2 = 0.79; Error rate



Table 1
Properties of significant clusters.

Location Coordinates Time Size (max) Source contrast (×10−12) p-Value

Long words–short words (stimulus-locked)
L supra marginal, transverse temporal −44, −29, 12 176–256 18.76 (43) −1.79 0.014
R superior temporal 55, −27, 4 408–484 14.45 (31) 2.98 0.030

Fan 2–fan 1 (stimulus-locked)
L insula, superior temporal, middle temporal, supra marginal, precentral, transverse
temporal, parahippocampal, postcentral, inferior temporal, entorhinal,
pars opercularis, banks of the STS

−49, −15, −5 220–604 73.73 (188) −3.86 b0.001

L superior parietal, paracentral −31, −45, 51 332–544 11.72 (39) −3.56 0.018
R banks of the STS, supra marginal, postcentral, superior temporal, inferior parietal 50, −35, 13 368–636 24.85 (56) −2.97 0.002
L isthmus cingulate −7, −37, 27 412–756 5.92 (21) −0.373 0.031

Fan 2–fan 1 (response-locked)
L superior temporal, insula, middle temporal, transverse temporal, supra marginal,
postcentral, banks of the STS, precentral

−54, −22, −1 −648 to −116 44.58 (147) −4.28 b0.001

L superior frontal, posterior cingulate, caudal middle frontal, caudal anterior cingulate,
postcentral, paracentral, precentral, rostral middle frontal, ishtmus cingulate,
pars opercularis, supra marginal

−28, 6, 40 −512 to −152 47.41 (122) −2.66 b0.001

R middle temporal, superior temporal, supra marginal, inferior temporal 51, −30, −9 −460 to −216 17.84 (47) −3.63 0.008

Target–foil (response-locked)
R precentral, postcentral 29, −28, 59 −20–+88 22.79 (55) 7.64 0.007

Left hand–right hand (stimulus-locked)
R postcentral 39, −27, 52 284–576 4.35 (15) 5.27 0.045

Left hand–right hand (response-locked)
R postcentral, precentral, superior parietal, supra marginal, inferior parietal,
caudal middle frontal

37, −31, 52 −160–+104 76.10 (187) 15.0 b0.001

R postcentral, insula, precentral, supra marginal, superior temporal,
banks of the STS, transverse temporal

54, −14, 22 −148–+92 46.75 (119) 7.85 0.002

L postcentral, precentral, superior parietal, supra marginal,
caudal middle frontal, precuneus

−35, −31, 55 −164–+148 76.77 (209) −15.3 b0.001

R temporal pole, fusiform, superior temporal 34, −1, −27 −144–+96 26.95 (80) −6.81 0.006
L postcentral, supra marginal, insula, superior temporal, precentral, transverse temporal −54, −22, 24 −116–+112 56.38 (127) −8.17 0.002

Note: Location lists ROIs with 100 or more sources in the cluster, in order of contribution; L/R indicates hemisphere. Coordinates indicate center-of-mass of current estimates in MNI co-
ordinates. Time is time in ms since stimulus, before response (−) or after response (+). Size indicates mean size over time; max size indicates maximum size. Source contrast indicates
difference in mean estimated current in Am. p-Value indicates the permutation cluster p-value.
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marginally significant: F(1,17) = 3.56, p = 0.077, ηp2 = 0.17). In
addition, the effect of fan on RT was larger for foils than for targets, as
indicated by a significant interaction between fan and Probe type
(F(1,17) = 8.79, p = 0.009, ηp2 = 0.34). These results indicate that
foils were slightly more difficult to identify than targets, and that fan 2
items were more difficult than fan 1 items. Neither word length nor
response hand had a significant effect on behavior. All behavioral effects
are in line with previous associative recognition studies (e.g., Anderson
and Reder, 1999; Borst et al., 2013; Schneider and Anderson, 2012).
Fig. 5.Difference in source estimates for target–foils, separately for left-handed and right-
handed responses.
MEG source estimates

For the source estimates we performed non-parametric cluster-
based permutation tests to control for multiple comparisons (Maris
and Oostenveld, 2007). We report clusters with a permutation p-
value b 0.05; Fig. 4 shows contrasts between source estimates of two
conditions (e.g., left-handed–right-handed responses) for sources in
significant clusters. In addition, we included the full 4D t-maps and
source estimates (both raw and thresholded based on the identified
clusters) as Supplementary Material. Table 1 reports the clusters for all
contrasts; location names are based on the ROIs in the Desikan-
Killiany atlas (Desikan et al., 2006).

Word length
Fig. 4A shows stimulus-locked contrasts between long and short

words (positive values indicate that long words resulted in higher
source estimates, negative values that short words resulted in higher
source estimates). Two clusters were identified: one cluster between
176 and 256 ms and one cluster between 408 and 484 ms (Table 1).
In the early cluster, short words resulted in higher currents around
the posterior part of the superior temporal lobe in the left hemisphere.
In the later cluster, long words caused higher current than short
words in a similar area in the right hemisphere. The response-locked
analysis did not yield any significant clusters.

Associative fan
Fig. 4B shows stimulus-locked (top) and response-locked (bottom)

effects of the fan manipulation. In all clusters, fan 1 pairs resulted in
greater estimated currents than fan 2 pairs. The combination of the
stimulus-locked and response-locked analyses shows that the first



Fig. 6. Results of the sensor-based classifier: A) stimulus-and-response-locked results, B) stimulus locked and response-locked results separately. Horizontal lines at the bottom of the
graphs indicate where classification accuracy was significantly (p b 0.001) different from chance (50%) across subjects.
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differences (220–350ms) occurred in the lower parts of themiddle and
superior temporal ROIs. Activity thenmoves forward and upward to the
lower parts of the post- and precentral gyri and the supramarginal ROI
(370–640 ms). From about 350 ms before the response (~950 ms
post-stimulus) we also see prefrontal activity, focused around the supe-
rior frontal and caudalmiddle frontal ROIs. This latter area overlapswith
the area that ACT-R links to declarative memory retrievals (Anderson,
2007; Borst et al., 2015), and is consistently implicated in fMRI studies
of the fan effect (e.g., Danker et al., 2008; Sohn et al., 2003, 2005). The
early effects occurred in both hemispheres, but were stronger in the
left hemisphere; the prefrontal effect was absent from the right
hemisphere.

Probe type
Differences between targets and foils became apparent very late in

the associative recognition trials. The only significant cluster was
found in the response-locked analysis, from 20 ms before the response
until 88 ms after the response, in the right pre- and postcentral ROIs.
Fig. 4C and D indicate that this cluster essentially overlaps with the
left-handed motor cluster we see in the response-hand analysis.

To check whether this cluster reflects differences in motor activity
(i.e. between index finger for targets andmiddle finger for foils) instead
of activity related to memory representation or decision making, as we
Table 2
Classification accuracy in ROIs.

Location % correct p-Value

Word length
L lateral occipital 79.84 b0.001
R lateral occipital 76.89 b0.001
R lingual 75.01 b0.001
L pericalcarine 74.44 b0.001
L lingual 73.76 b0.001
R pericalcarine 73.02 b0.001
L cuneus 70.44 b0.001
R cuneus 69.50 b0.001
L fusiform 68.06 b0.001
R fusiform 66.64 b0.001

Fan
R lingual 61.98 b0.001
L inferior parietal 61.94 b0.001
L lingual 61.90 b0.001
L lateral occipital 61.68 b0.001
L insula 61.56 b0.001
L middle temporal 61.04 b0.001
L fusiform 60.82 b0.001
L superior temporal 60.47 b0.001
L postcentral 60.25 b0.001
L superior parietal 60.07 b0.001

Note: L and R indicate left and right hemisphere, respectively. L&R indicates an ROI defined ov
intended, we performed an additional response-locked analysis. In this
analysis we looked at effects of probe type separately for left- and
right-handed response blocks. Fig. 5 shows the results. For left-handed
responses we found the same cluster as in the overall analysis (−16–
88 ms; permutation p-value b 0.001; cf. Fig. 4C). For right-handed re-
sponses we did not find this cluster, instead we identified a cluster in
the left hemisphere with similar timing and location as the cluster for
left-handed responses (−48–52 ms; permutation p-value = 0.007).
This suggests that the probe type cluster in Fig. 4C reflects a difference
between motor processing for index fingers and middle fingers (with
indexfingers yielding the stronger signal), instead of a processingdiffer-
ence between targets and foils. Apparently this difference is stronger for
left-handed responses than for right-handed responses, as we only
identified the right-hemispheric cluster in the overall analysis (also
evident in Fig. 5).
Response hand
As expected, left-handed responses resulted in higher estimates

than right-handed responses in the right motor cortex, and right-
handed responses in higher estimates in the left motor cortex. These
clusters started around 150 ms before the response and extended into
the post-response interval.
Location % correct p-Value

Probe type
L precuneus 53.31 0.08
L superior parietal 52.83 0.08
L precentral 52.25 0.18
R entorhinal 51.75 0.12
L paracentral 51.65 0.22
L caudal anterior cingulate 51.43 0.16
L fusiform 50.92 0.33
R insula 50.70 0.35
L supramarginal 50.70 0.33
L postcentral 50.61 0.39

Response hand
L&R precentral 76.10 b0.001
R postcentral 73.90 b0.001
L postcentral 73.71 b0.001
L precentral 71.96 b0.001
R precentral 68.29 b0.001
R superior parietal 66.90 b0.001
L superior parietal 66.36 b0.001
R supramarginal 66.08 b0.001
R paracentral 63.56 b0.001
L paracentral 63.55 b0.001

er both hemispheres.
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Classifier

Although the permutation analysis identifies significant clusters, it is
a univariate analysis in the sense that single sources have to show a
significant effect before they are taken into account. In contrast, the
classifier combines information from multiple sources and time points
to distinguish different conditions, potentially making the analysis
more sensitive.

Time

To determine when information related to the experimental condi-
tions was processed, we applied the classifier to the MEG sensor data.
First, we investigated if the classifier could reliably estimate to which
condition anexample belongedusing the full interval (i.e. 200ms before
the stimulus until the response). For Word Length, the classifier
determined the correct condition in 83.8% of the examples, far above
the 50% chance level. Likewise, fan (79.8%), Probe Type (65.9%), and
Response Hand (88.3%) also could be classified reliably, but note that
Probe Type was considerably harder to classify than the other condi-
tions. As the second step, we divided the sensor data into 50-ms
intervals and applied the classifier to these intervals separately. Fig. 6A
shows the results for the stimulus-and-response locked data, Fig. 6B
for the stimulus-locked and response-locked data separately.

Word Length was the first condition to be classified correctly,
starting in the 50–100 ms interval. It peaks between 100 and 150 ms,
stays elevated until 400 ms, then slowly decreases, but can be classified
quite reliably up to the end of the trial. The second condition to be clas-
sified correctly was associative fan, from 250 ms onwards. Third is re-
sponse hand (recall that target and foils required different fingers of
the same hand, not a different hand), starting at 350 ms but clearly
peaking at the end of the trial. Finally, probe type could be reliably clas-
sified from about 300 ms before the response.

Location
Knowing when the conditions could be identified in the MEG signal

is a first step in determining the processing stages participants moved
through to perform the associative recognition task. To further investi-
gate the content of the processing stages, we applied the classifier to
the 68 ROIs of the Desikan-Killiany atlas. For Response Handwe defined
an additional region of interest: the combination of the precentral ROIs
of both hemispheres, as this should most clearly account for hand. First,
we used the full interval from 200 ms before the stimulus until the re-
sponse, to determine ROIs of interest. For ROIs in whichwe could classi-
fy a condition reliably, we divided the data in 50-ms intervals to see at
what times the ROI was involved in processing. Table 2 lists the top 10
ROIs with the highest classification accuracy for each condition; Fig. 7
shows classification accuracy for significant ROIs (p b 0.001 across sub-
jects) and classification over time for a selection of these ROIs. Supple-
mentary Table 1 lists classification accuracy of all ROIs for each
condition (i.e. it is a complete version of Table 2).

Unlike the standard analysis, the classifier clearly identified the lat-
eral occipital ROIs as the main regions involved in Word Length effects,
especially between 50 and 150 ms. Confirming the standard analysis,
fan could best be classified in temporal, inferior parietal, and prefrontal
ROIs, including the insula (Fig. 7B). None of theROIs contained sufficient
information to classify Probe Type consistently across subjects. Finally,
as expected, Response Hand could best be classified by the combination
of the precentral ROIs of both hemispheres – classification accuracy
rising sharply towards the end of the trial (Fig. 7C).

General discussion

The goal of this study was to get more insight in the cognitive pro-
cesses underlying associative recognition, and thereby evaluate associa-
tive recognition theories. In particular,we aimed to identify the number,
nature, timing, and location of memory processes involved in associa-
tive recognition. To track cognitive processes both in time and space
we applied MEG: its millisecond resolution provides more information
on the timing of these processes than the aggregate measures of fMRI
or behavior, while its reasonable spatial resolution yieldsmore informa-
tion on the content of these processes than the coarse localization of
EEG measurements. In this final section we discuss the detailed
spatio-temporal model of associative recognition that resulted.

In the experiment, we manipulated word length, associative fan,
probe type, and response hand, which were each intended to tap one
of the proposed cognitive processes: perceptual encoding, associative
retrieval, decision making, and response generation, respectively. By
tracking the effects of these manipulations with univariate
cluster-based permutation tests, as well as with a multi-variate classifi-
er, we aimed to get more insight in the nature and timing of the under-
lying processes. The general picture that arose was a posterior-to-
prefrontral progression of activity during the first 1100 ms of each
trial, after which the activity moved to parietal and motor cortices to
issue the response at around 1300ms (Figs. 4 and 7). The earliest effects
are related to word length – and by association perceptual encoding –
starting at 50 ms in the lateral occipital cortex. Second, associative fan
showed effects from 220 ms onwards, indicating memory processing.
Finally, the probe type and response hand manipulations resulted in
effects starting around 300msbefore the response.Wewill nowdiscuss
these results in detail, followed by the implications for theories of asso-
ciative recognition. The results are summarized in Fig. 8, showing the
timing and location of the inferred cognitive processes in associative
recognition.

Processing stages

Word length: perceptual encoding

As expected, Word Length did not affect response time (Juhasz and
Rayner, 2003; Spinelli et al., 2005). It did result in the earliest effects
on the MEG signal, however, leading to successful classification starting
in the 50-ms interval and continuing up to the end of the trial (Figs. 6
and 7). Classification accuracywas highest in right and left lateral occip-
ital regions. This is in line with earlier studies, both standard EEG/MEG
analyses (Assadollahi and Pulvermüller, 2003; Hauk et al., 2006; Hauk
and Pulvermüller, 2004) and classification approaches (Borst et al.,
2013; Sudre et al., 2012). Although this early occipital effect did not sur-
vive the cluster analysis (Fig. 4A), we do find this effect clearly between
60 and 140 ms when looking at a univariate contrastwithout correcting
for multiple comparisons (Fig. 8, top left). Classification accuracy stays
high until 400 ms, after which long and short words are harder to
distinguish – although classification is still possible. The cluster analysis
confirmed word length effects up to 480 ms, with the effects between
180 and 480ms being located in dorsal temporal regions, on the border
with the supramarginal gyrus. Similar effects were reported in several
studies (e.g., Borst et al., 2013; Hauk et al., 2006; Hauk et al., 2009;
Hauk and Pulvermüller, 2004).

If we assume that word length effects indicate perceptual encoding,
we can conclude that encoding starts at 60ms, or perhaps a little earlier
if word length (i.e. the total size of the stimulus) is not the first informa-
tion to register. The words are processed between 60 and 140 ms in
visual occipital regions, in which the signal is known to be modulated
byword length, andwhere the effect probably reflects themore extend-
ed visual stimuli rather than differences in lexical access (Assadollahi
and Pulvermüller, 2003; Hauk and Pulvermüller, 2004; Indefrey et al.,
1997). Afterwards, the activity moves to dorsal temporal regions,
which are thought to be involved in lexical and semantic processing
(Assadollahi and Pulvermüller, 2003; Hauk et al., 2006, 2009). If we
assume that the temporal activity indicates access to the identity of
the words and their meaning, we can conclude that from 180 ms on-
wards general memory processes can begin to identify whether these
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words – and their combination –were encountered during the training
phase of the experiment. Finally, word length can be classified above
chance until the end of the trial, which might be due to the continuing
visual input.

Associative fan: memory retrieval

The associative fan manipulation resulted in activity that can be di-
vided into three patterns, with fan 1 items always resulting in greater
estimated currents than fan 2 items. First, the cluster analysis showed
an effect from 220 to 350ms in the lower parts of the middle and supe-
rior temporal regions. This pattern extended up to about 100 ms before
the response (Table 1). Second, from370ms after the stimulus till about
400ms before the response, we found activity in the supramarginal ROI
and the lower parts of the post- and precentral gyri. The classifier
located this effect in the left inferior parietal ROI, starting at 400 ms
(Fig. 7). Third, from about 350 ms before the response (~950 ms
post-stimulus), fan 1 items resulted in greater activity in the prefrontal
cortex, the left caudal middle frontal ROI. This area is consistently
implicated in fMRI studies of the fan effect (e.g., Danker et al., 2008;
Sohn et al., 2005, 2003).

In the previous section we hypothesized that lexical access starts
around 180 ms into the trial. From that point onwards we might also
expect to find differences between fan 1 and fan 2 words, as fan 2
words were encountered more often than fan 1 words (fan 2 words
were presented more frequently during training, left panel of Fig. 3,
and occurred in two pairs). We hypothesize that this is reflected in
the first of the three distinguishable fan processes, and constitutes the
familiarity process in dual-process models (e.g., Rugg and Curran,
2007; Yonelinas, 2002). Whereas the timing overlaps with the FN400
effect of EEG data (300–500 ms), its location is different: in EEG data a
negativity over mid-frontal electrodes is associated with this effect,
while in our data it is a clear temporal effect. Supporting our interpreta-
tion, Gonsalves and colleagues have shown that medial temporal cortex
activity correlates with stimulus familiarity between 150 and 300 ms
post-stimulus in MEG recordings (Gonsalves et al., 2005). Furthermore,
fMRI and lesion studies have shown that familiarity is dependent on
structures in the medial temporal lobe, most strongly on the perirhinal
cortex (Diana et al., 2007; Henson, 2005; Rugg and Yonelinas, 2003),
making source projections of this effect on the superior and middle
temporal lobes reasonable. This interpretation matches our earlier EEG
findings, where we contrasted new foils (entirely new distractor
pairs) with re-paired foils to isolate a familiarity process, resulting in a
difference between 180 and 380 ms (Borst and Anderson, 2015a).
Although the activity in this region continues almost until the end of
the trial, we assume that the actual familiarity process is early, between
180 and 380ms, based on the EEG evidence and the literature. The con-
tinued difference in activity might be due to accessing information to
support recollection and representational processes.

We hypothesize that the second process reflects recollection of the
associative information. We assume that the activity projected onto
the supramarginal ROI, the lower parts of the post- and precentral
gyri, and the superior temporal ROI, originates in the hippocampus
and surrounding areas, which are known to be instrumental in recollec-
tion (e.g., Bunge et al., 2004; Diana et al., 2007; Henson, 2005; Rugg and
Yonelinas, 2003; Stark and Squire, 2001). Furthermore, the timing of the
process (370–900 ms) overlaps with the recollection process assumed
by dual-process theories (parietal old/new effect, 500–800 ms), and
also matches the recollection process and associated working memory
process identified in our EEG data (~250–750 ms; Borst and Anderson,
2015a). Finally, it has been shown that activating the temporal cortex
with transcranial direct current stimulation improves recognition of
old items, possibly by boosting recollection (Pisoni et al., 2015).
Fig. 7. Results of the source-based classifier. Colors in the surface plots indicate classification
resulted in significant above-chance classification across subjects; line plots show classificatio
The area of the third pattern, in the prefrontal cortex, is in fMRI studies
of associative recognition often linked to declarativememory retrieval, or
recollection (Anderson, 2007; Borst and Anderson, 2013; Danker et al.,
2008; Lepage et al., 2003; Sohn et al., 2005). However, the high temporal
resolution of MEG revealed that this is a late effect, starting at 950 ms
post-stimulus. Combined with the interpretation of the other processes,
we hypothesize that the activity in this area reflects the maintenance of
the recollected informationwhile the decision ismade, instead of the rec-
ollection process itself. This is in line with research that implies that this
region is involved in post-retrieval monitoring, also for associative infor-
mation (e.g., Achim and Lepage, 2005; Mitchell et al., 2004; Rugg et al.,
2003). Likewise, Ghuman et al. (2008) proposed that this prefrontal
area is used as amapping between recollection and decision in a priming
study. Anderson et al. (2016) found evidence for such a representation
process in associative recognition, of which the activation strength
depended on the strength of thememories – here the difference between
fan 1 and fan 2 pairs (note that they proposed a parietal representation,
however, based on EEG). Borst and Anderson (2015a) posited a decision
process between 700 and 1000ms,which could act upon the information
that is represented in this area.

Although we divided the fan activity into three patterns for ease of
discussion, especially the first two patterns seem highly related and
overlapping. It has also been argued that there is no clear regional dis-
tinction in the medial temporal lobe between familiarity and recollec-
tion processes, although familiarity manipulations seem to result in
stronger effects in the perirhinal cortex and recollection manipulations
in stronger effects in the hippocampus (e.g., Diana et al., 2007; Henson,
2005). That said, at the very least we observed an increase in the total
activation in these regions starting at 370ms, implying that recollection
is taking place – also based on the timing of the increased activation
(unfortunately, we did not include an independent familiarity manipu-
lation in the current experiment). For this reason, combinedwith previ-
ous evidence (Borst and Anderson, 2015a), we hypothesize that the
familiarity process itself ends around this time. The continued activity
might signify access in support of the recollection process. The third pat-
tern of activity, in the prefrontal cortexwasmore clearly separated from
the other clusters. To better distinguish different processing stages, fu-
ture studies could do an item-level representational similarity analysis
(RSA) to examine the transition from visually oriented similarity be-
tween true pairings and foil stimuli to semantically oriented similarity,
as suggested by one of our reviewers.

Interestingly, all of the effects were in the direction of greater activity
for lower fan items (in line with previous EEG studies, e.g., Borst et al.,
2013). This contrasts with fMRI, where higher fan items yield greater ac-
tivity than lower fan items (Danker et al., 2008; Khader et al., 2007; Sohn
et al., 2005). We believe this is due to the sluggishness of the fMRI BOLD
response. Fan 1 items do elicit greater activity, but for a shorter duration
than fan 2 items (i.e. RTs are longer for fan 2 items). The longer duration
of fan 2 items results in a higher BOLD response over the whole trial, but
not in greater M/EEG activity at any one point in time.

Probe type: decision
The effect of probe type was intended to indicate a decision process.

Surprisingly – given that the task was to distinguish targets and
re-paired foils, and we are looking at correct trials – the cluster analysis
only identified a very late cluster starting 20ms before the response and
lasting until 90 ms after the response (Table 1). Furthermore, this clus-
terwas located over the rightmotor cortex and not over areas tradition-
ally implicated in decision making (Fig. 4). A follow-up analysis that
separated left- and right-handed responses suggested that this cluster
is related to differences in motor processing between index finger
(targets) and middle finger (foils), as it only shows up for left-handed
responses, and a similar cluster in the left hemisphere was identified
accuracy of the ROI when using the full interval from stimulus till response for ROIs that
n accuracy over time for a particular ROI.



427J.P. Borst et al. / NeuroImage 141 (2016) 416–430



Fig. 8. Overview of the cognitive processes in associative recognition as indicated by the current results in combination with the previous literature. See the main text for details.
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for right-handed responses (Fig. 5). It is conceivable that the index
finger is represented stronger in the brain, and therefore causes a sharp-
er peak of activity than middle-finger responses (it is plausible that
differences between fingers can be measured with MEG, see
e.g., Beisteiner et al., 2004; Hadoush et al., 2011; Inoue et al., 2013).
We only found the effect over right motor cortex in the overall analysis,
perhaps because the difference between index and middle finger is
greater for the left hand for our right-handed participants.

The multivariate classifier turned out to have more power, and re-
sulted in reliable classification starting 300 ms pre-response (Fig. 6B),
whereas the motor effects identified by the cluster analysis started at
45 ms pre-response. Although this was also partly based on the
precentral motor ROI, the left precuneus and left superior parietal con-
tributed to classification (Table 2, Fig. 7). These regions might indicate
an actual decision process, which would match a central-parietal effect
in the EEG study thatwas characterized by amore positive signal for tar-
gets compared to re-paired foils between 350 and 50 ms before the re-
sponse (Borst et al., 2013). It also resembles the parietal old/new effect
(e.g., Rugg and Curran, 2007), although that is typically measured by
comparing old and completely new items, while in our experiment
only the associative status of the pair is new, and not the individual
words (see also Speer and Curran, 2007, who showed a parietal old/
new effect in response to associative status).

It is possible that the decision process itself is very similar between
targets and re-paired foils – just the outcome is different – and that it
is therefore hard to find activity due to this process.5 All models
discussed in the introduction propose a recall-to-reject process for re-
5 Although there are clear differences in reaction times and accuracy between targets
and foils, we argue these are due to the memory processes, not to the decision process
itself.
paired foils, which means that in our experiment highly similar infor-
mation is retrieved for targets and re-paired foils (a word pair). This
would not result in a different activation pattern. The decision process
then compares the recollected information that is represented in the
prefrontal cortex (the third fan pattern above) to the information on
the screen. This should also result in similar activation patterns, except
for the final decision. We hypothesize that this is indeed the case, and
that it is the reason for finding so few differences in activity between
targets and re-paired foils, even though participants made the right
decisions and performed very well.

Response hand: response
Finally, response hand was varied between blocks and should indi-

cate a response process. The cluster analysis showed a very early cluster
280ms after stimulus onset in the right hemisphere, and both a left and
a right cluster starting about 160 ms before the response. All results
were over the left and rightmotor cortices. The classifier yielded similar
results, with successful classification starting around400ms (Fig. 6), but
with a sharp peak in the last 150 ms before the response. These results
imply that participants were anticipating giving a response already
early on in the trial (note that this analysis compares blocks, not targets
and foils, and that such an effect is therefore reasonable as response
hand was varied between blocks), but that motor programming of the
finger press itself took place in the last 160 ms before the response.

A spatio-temporal model of associative recognition
Fig. 8 gives an overview of the cognitive processes in associative rec-

ognition that were identified in the current study, and that form the
basis for a detailed spatio-temporal model of associative recognition.
As became clear, three memory processes play a role: familiarity, recol-
lection, and representation. Familiarity and recollection were localized
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to structures in the medial temporal lobe and the supramarginal gyrus,
and the recollected information was represented in the prefrontal cor-
tex. This indicates that, at least for associative recognition, neither
single-process theories (e.g., Gillund and Shiffrin, 1984; Wixted, 2007)
nor the original ACT-R model (Fig. 1, top) can explain the data.
Dual-process theories and the EEG model (Fig. 1, bottom) give a better
account of these processes: we found evidence for an early familiarity
process followed by recollection. However, also these theories did not
include a separate representation process.

The original ACT-R model (Fig. 1, top) was based on behavior and
fMRI data, and did not include a familiarity process. Where the EEG
data already gave indications for a separate familiarity process (Borst
and Anderson, 2015a), the superior localization of MEG adds a repre-
sentational process in the prefrontal cortex to the model. This region
had been implicated in imaging studies of associative recognition as
the region responsible for recollection (e.g., Sohn et al., 2003). As the su-
perior temporal resolution of MEG showed, this region only became ac-
tive relatively late in the process, implying that it is used to store the
results of a recollection process instead of for recollection itself. The
EEG data also indicated a relatively complex decision process (Fig. 1,
bottom). The currentMEG results help to understand this process: it in-
dicated that the actual decision process might be located in the parietal
cortex, and acts upon information represented in the prefrontal cortex
by comparing it to the word pair encoded from the screen. This is
close to the fMRI-informed ACT-R model (e.g., Sohn et al., 2005),
which assumes a 200 ms representational process followed by a brief
(50 ms) decision.

Conclusions

By using non-parametric cluster analyses of MEG source estimates,
and training a machine-learning classifier both on MEG sensor data as
well as source estimates in 68 regions of interest, wewere able to sketch
a relatively detailed model of associative recognition both in time and
space (Fig. 8). This model indicates where existing theories have to be
adapted: besides a familiarity stage (single-processmodels) and a recol-
lection stage (dual-processmodels, ACT-R), there also needs to be a rep-
resentation stage, during which a decision process acts upon the
recollected information.

In addition to yielding new information on associative recognition,
this study also highlights the limits of behavioral data and fMRI data.
We have argued before that behavioral data is insufficient to constrain
models of cognition (Borst et al., 2015; Nijboer et al., 2016) as it only in-
dicates the cumulative duration of all processes (see also Anderson
et al., 2016). fMRI helps by attributing different processes to different
brain regions, in effect splitting a single process in tomultiple processes
in space. Similarly, EEG helps dividing the cumulative process into
smaller temporal episodes, which for instance helped to identify the
familiarity process (Borst and Anderson, 2015a). MEG provided key
additional information by allowing for an analysis in both time and
space. For instance, although fMRI had identified the importance of
the prefrontal region, because of fMRI's low temporal resolution it was
unclear that this region only becomes active relatively late in a task,
and can therefore not represent the recollection process itself.

To analyze the MEG data, we used non-parametric cluster-based
permutation tests (Maris andOostenveld, 2007) and amultivariate clas-
sifier. The classifier turned out to be more powerful than the cluster-
based analyses, and for instance identified an early visual effect
(whichwas also observable in the datawhen not correcting formultiple
comparisons). This illustrates the power of such a classifier, which can
identify processes that are either only present when combining activity
from multiple sources, or where multiple-comparison corrections limit
the power of amass-univariate analysis. On the other hand, activity pat-
terns on which the decisions of a classifier are based are often hard to
interpret, so we recommend using a classifier in combination with
more standard univariate analyses.
Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2016.08.002.
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