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A B S T R A C T

The lack of multivariate methods for decoding the representational content of interregional neural communica-
tion has left it difficult to know what information is represented in distributed brain circuit interactions. Here we
present Multi-Connection Pattern Analysis (MCPA), which works by learning mappings between the activity
patterns of the populations as a factor of the information being processed. These maps are used to predict the
activity from one neural population based on the activity from the other population. Successful MCPA-based
decoding indicates the involvement of distributed computational processing and provides a framework for
probing the representational structure of the interaction. Simulations demonstrate the efficacy of MCPA in
realistic circumstances. In addition, we demonstrate that MCPA can be applied to different signal modalities to
evaluate a variety of hypothesis associated with information coding in neural communications. We apply MCPA to
fMRI and human intracranial electrophysiological data to provide a proof-of-concept of the utility of this method
for decoding individual natural images and faces in functional connectivity data. We further use a MCPA-based
representational similarity analysis to illustrate how MCPA may be used to test computational models of infor-
mation transfer among regions of the visual processing stream. Thus, MCPA can be used to assess the information
represented in the coupled activity of interacting neural circuits and probe the underlying principles of infor-
mation transformation between regions.
1. Introduction

Since at least the seminal studies of Hubel and Wiesel (1959) the
computational role that neurons and neural populations play in pro-
cessing has defined, and has been defined by, how they are tuned to
represent information. The classical approach to address this question
has been to determine how the activity recorded from different neurons
or neural populations varies in response to parametric changes in the
information being processed. Single unit studies have revealed tuning
curves for neurons from different areas in the visual system responsive
to features ranging from the orientation of a line, shapes, and even high
level properties such as properties of the face (Desimone et al., 1984;
Hubel and Wiesel, 1959; Tsao et al., 2006). Multivariate methods,
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especially pattern classification methods from modern statistics and
machine learning, such as multivariate pattern analysis (MVPA), have
gained popularity in recent years and have been used to study neural
population tuning and the information represented via population
coding in neuroimaging and multiunit activity (Cox and Savoy, 2003;
Ghuman et al., 2014; Haxby et al., 2001; Haynes and Rees, 2006;
Hirshorn et al., 2016; Kamitani and Tong, 2005; Poldrack, 2011; Polyn
et al., 2005). These methods allow one to go beyond examining
involvement in a particular neural process by probing the nature of the
representational space contained in the pattern of population activity
(Edelman et al., 1998; Haxby et al., 2014; Kriegeskorte and Kie-
vit, 2013).

Neural populations do not act in isolation, rather the brain is highly
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Fig. 1. Illustration of the connectivity map and classifier of MCPA. The MCPA
framework is demonstrated as a two-phase process: learning and testing. Top left: an
illustration of the learned functional information mapping between two populations
under condition 1. The representational state spaces of the two populations are shown
as two planes and each pair of blue and red dots correspond to an observed data point
from the populations. The functional information mapping is demonstrated as the
colored pipes that project points from one space onto another (in this case, a 90�

clockwise rotation). Bottom left: an illustration of the learned functional information
mapping between two populations under condition 2 (in this case, a 90� counter-
clockwise rotation). Top right: an illustration of the predicted signal by mapping the
observed neural activity from one population onto another using the mapping patterns
learned from condition 1. The real signal in the second population is shown by the red
dot. Bottom right: an illustration of the predicted signal by mapping the observed
neural activity from one population onto another using the mapping patterns learned
from condition 2.
In this case, MCPA would classify the activity as arising from condition 1 because of the
better match between the predicted and real signal.
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interconnected and cognitive processes occur through the interaction of
multiple populations. Indeed, many models of neural processing suggest
that information is not represented solely in the activity of local neural
populations, but rather at the level of recurrent interactions between
regions (Grossberg, 1980; Kveraga et al., 2007; Lee and Mumford,
2003). However previous studies only focused on the information rep-
resentation within a specific population (Freiwald et al., 2009; Ghuman
et al., 2014; Haxby et al., 2001; Hirshorn et al., 2016; Nestor et al.,
2011; Tsao et al., 2006), as no current multivariate methods allow one
to directly assess what information is represented in the pattern of
functional connections between distinct and interacting neural pop-
ulations with practical amounts of data. Such a method would allow one
to assess the content and organization of the information represented in
the neural interaction. Thus, it remains unknown whether functional
connections passively transfer information between encapsulated mod-
ules (Fodor, 1983) or whether these interactions play an adaptive
computational role in processing. Note that our definition of
non-adaptive information transfer is equivalent to a static linear pro-
jection where no computational “work” is done in the interaction be-
tween the regions and therefore no information is added (from an
information theory perspective). Adaptive information transfer is one in
which computational work related to the behavioral state or condition is
performed and therefore state or condition specific information is added
through the interaction between regions; this is equivalent to a
non-linear function.

Univariate methods that go beyond assessing the degree of
coupling between populations to assess changes in the relationship
between the activity as a factor of condition also examine adaptive
communication between regions. For example the psychophysiological
interactions (PPI; (Friston et al., 1997)) and dynamic causal modeling
methods (Friston et al., 2003) are sensitive to adaptive interregional
communication. Multivariate methods, however, in comparison to
univariate methods, allow for “more sensitive detection of cognitive
states,” “relating brain activity to behavior on a trial-by-trial basis,”
and “characterizing the structure of the neural code” (Norman et al.,
2006). Thus, a multivariate pattern analysis method for functional
connectivity analysis is critical for decoding the representational
structure of interregional interactions.

In this paper, we introduce a multivariate analysis algorithm
combining functional connectivity and pattern recognition analyses
that we term Multi-Connection Pattern Analysis (MCPA). MCPA works
by learning the discriminant information represented in the shared
activity between distinct neural populations by combining multivariate
correlational methods with pattern classification techniques from ma-
chine learning in a novel way. Much the way that MVPA goes beyond a
t-test or ANOVA by building a multivariate model of local activity that
is then used for single-trial prediction and classification, MCPA goes
beyond PPI by building a multivariate connectivity model that is then
used for single-trial prediction and classification. This single-trial pre-
diction and classification makes MCPA distinct from previous connec-
tivity approaches that only statistically test the absolute or relative
functional connectivity between two populations (Cribben et al., 2012;
Finn et al., 2015; Richiardi et al., 2011; Shirer et al., 2012; Wang et al.,
2015) and allows for a detailed probe of the representational structure
of the interaction.

The MCPA method consists of an integrated process of learning
connectivity maps based on the pattern of coupled activity between two
populations A and B conditioned on the stimulus information and using
these maps to classify the information representation in shared activity
between A and B in test data. The rationale for MCPA is that if the
activity in one area can be predicted based on the activity in the other
area and the mapping that allows for this prediction is sensitive to the
information being processed, then this suggests that the areas are
communicating with one another and the communication pattern is
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sensitive to the information being processed. Thus, MCPA simulta-
neously asks two questions: 1) Are the multivariate patterns of activity
from two neural populations correlated? (i.e. is there functional con-
nectivity?) and 2) Does the connectivity pattern change based on the
information being processed? This is operationalized by learning a
connectivity map that maximizes the multivariate correlation between
the activities of the two populations in each condition. This map can be
thought of like the regression weights that transform the activity
pattern in area A to the activity pattern in area B (properly termed
“canonical coefficients” because a canonical correlation analysis [CCA]
is used to learn the map). These maps are then used to generate the
predictions as part of the classification algorithm. Specifically, a pre-
diction of the activity pattern in one region is generated for each con-
dition based on the activity pattern in the other region projected
through each mapping. Single trial classification is achieved by
comparing these predicted activity patterns with the true activity
pattern (see Fig. 1 for illustration). With MCPA single trial classification
based on multivariate functional connectivity patterns is achieved
allowing the nature of the representational space of the interaction to
be probed.

We present a number of simulations to validate MCPA for a realistic
range of signal-to-noise ratios (SNR) and to show that MCPA is insen-
sitive to local information processing. We apply MCPA to examine the
inter-regional representation for natural visual stimuli in visual cortex
using functional magnetic resonance imaging (fMRI) data. Specifically,
we show that the interactions between regions of the visual stream (V1,
V2, V3, V4, and lateral occipital cortex [LO]) are sensitive to infor-
mation about individual natural images. We combine MCPA with
representational similarity analysis to demonstrate that MCPA can be
used to evaluate computational models and make inferences regarding
the underlying neural mechanism of information transferring. To
demonstrate MCPA's applicability to electrophysiological signals and



Algorithm 1: Multi-Connection Pattern Analysis (MCPA)

Input:

training data: matrices Xð1Þ
A for ROI-A under condition 1, Xð2Þ

A for

ROI-A under condition 2, Xð1Þ
B for ROI-B under condition 1, Xð2Þ

B for
ROI-B under condition 2

testing data: xA for observation in ROI-A, and xB for observation in
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multivariate oscillatory synchrony, we use MCPA to examine the
circuit-level representation for faces using intracranial electroenceph-
alography (iEEG) data. Specifically, we show that the interaction be-
tween the occipital face area (OFA) and the fusiform face area (FFA)
represents information about individual faces. Despite the potential
caveat of small effect size due to the limited size of dataset, these results
demonstrate that MCPA can be used to probe the nature of represen-
tational space resulting from processing distributed across neu-
ral regions.
ROI-B

Output:

Prediction of condition for observation ðxA; xBÞ.
Learning phase:

1 Apply CCA on Xð1Þ
A and Xð1Þ

B to get linear mapping function Rð1Þ.
2 Apply CCA on Xð2Þ

A and Xð2Þ
B to get linear mapping function Rð2Þ.

Testing phase:

3 Use xA and Rð1Þ to reconstruct activity in ROI-B under condition

1, which yields reconstructed data matrix yð1ÞB .
4 Use xA and Rð2Þ to reconstruct activity in ROI-B under condition

2, which yields reconstructed data matrix yð2ÞB .
5 Compare the correlations between the reconstructions (yð1ÞB ; yð2ÞB )

under different conditions and the real observation (xB).
6 Reverse the direction (project B to A), repeat steps 3 and 4, and

compare the correlations between the reconstructions under
different conditions and the real observation.

7 Assign the condition that gives maximum average correlation
coefficient to the test case ðxA; xBÞ.
2. Materials and methods

2.1. Overview

The MCPA method consists of a learning phase and a test phase (as
in machine learning, where a model is first learned, then tested). In the
learning phase, the connectivity maps for each condition that charac-
terize the pattern of shared activity between two populations is learned.
In the test phase, these maps are used to generate predictions of the
activity in one population based on the activity in the other population
as a factor of condition and these predictions are tested against the true
activity in the two populations. Similar to linear regression where one
can generate a prediction for the single variable A given the single
variable B based on the line that correlates A and B, MCPA employs a
canonical correlation model (a generalization of multivariate linear
regression) and produces a mapping model for each condition as a hy-
perplane that correlates multidimensional spaces A and B. Thus one can
generate a prediction of the observation in multivariate space A given
the observation in multivariate space B on a single trials basis. In this
sense, MCPA is more analogous to a machine learning classifier com-
bined with a multivariate extension of PPI (Friston et al., 1997) rather
than being analogous to correlation-based functional connectiv-
ity measures.

The general framework of MCPA is to learn the connectivity map
between the populations for each task or stimulus condition separately
based on training data. Specifically, given two neural populations
(referred to as A and B), the neural activity of the two populations can be
represented by feature vectors in multi-dimensional spaces (Haxby et al.,
2014). The actual physical meaning of the vectors would vary depending
on modality, for example spike counts for a population of single unit
recordings; time point features for event-related potentials or
event-related fields; time-frequency features for electroencephalography,
electrocorticography or magnetoencephalography; or single voxel
blood-oxygen-level dependent (BOLD) responses for functional magnetic
resonance imaging. A mapping between A and B is calculated based on
any shared information between them for each condition on the training
subset of the data. This mapping can be any kind of linear transformation,
such as any combination of projections, scalings, rotations, reflections,
shears, or squeezes.

These mappings are then tested as to their sensitivity to the differ-
ential information being processed between cognitive conditions by
determining if the neural activity can be classified based on the map-
pings. Specifically, for each new test data trial, the maps are used to
predict the neural activity in one area based on the activity in the other
area and these predictions are compared to the true condition of the data.
The trained information-mapping model that fits the data better is
selected and the trial is classified into the corresponding condition. This
allows one to test whether the mappings were sensitive to the differential
information being represented in the neural interaction in the two
conditions.

The flow of the MCPA framework is demonstrated in Fig. 1 and Al-
gorithm 1. An implementation of MCPA and sample scripts in MATLAB
are freely available at https://github.com/yuanningli/MCPA.
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2.2. Connectivity map

The first phase of MCPA is to build the connectivity map between
populations. The neural signal in each population can be decomposed
into two parts: the part that encodes shared information, and the part that
encodes non-shared local information (including any non-shared mea-
surement noise; shared measurement noise, such as movement artifacts
in fMRI, can result in artifactually inflated connectivity, but for well-
balanced and randomized experiments should not differ between con-
ditions and therefore does not affect MCPA discrimination). We assume
that the parts of the neural activities that represent the shared informa-
tion in the two populations are linearly correlated (though, this can easily
be extended by the introduction of a non-linear kernel). Themodel can be
described as follows

C � N ð0; IdÞ;minfmA;mBg � d � 1

A
��C ¼ WAC þ D;D � N ðμA;Ψ AÞ;WA 2 ℝmA�d;Ψ A≽0

B
��C ¼ WBC þ E;E � N ðμB;Ψ BÞ;WB 2 ℝmB�d;Ψ B≽0

where C is the common activity, D and E are local activities, mA; mB are
the dimensionalities of activity vector in population A and B respectively.
Without loss of generality, μA ¼ μB ¼ 0 is assumed. The activity in pop-
ulation A can be decomposed into shared activityWAC and local activity
D, while activity in B can be decomposed into shared activity WBC and
local activity E. The shared discriminant information only lies in the
mapping matrix WA and WB since C always follows the standard

https://github.com/yuanningli/MCPA
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multivariate normal distribution (though correlation measures that do
not assume normally distributed data can also be applied with minor
modifications to the calculation).

In statistics, canonical correlation analysis (CCA) is optimally
designed for such a model and estimate the linear mappings (Bach and
Jordan, 2005; Hardoon et al., 2004). In brief, let S be the covari-
ance matrix

S ¼
�
SAA SAB

SBA SBB

�
¼ E

��
A
B

� �
A
B

�T �

Therefore WA and WB can be estimated by solving the following
eigen problem�
S�1
AASABS�1

BBSBAUA ¼ ρ2UA

S�1
BBSBAS�1

AASABUB ¼ ρ2UB

and we have�
WA ¼ SAAUAdM1

WB ¼ SBBUBdM2

whereUAd andUBd are the first d columns of canonical directionsUA and
UB, andM1,M2 2 ℝd�d are arbitrarymatrices such thatM1MT

2 ¼ Pd, Pd is
the diagonal matrix with the first d elements of P ¼ UT

BSBAUA. Therefore,
M1 and M2 are just matrices used to normalize the projection of A and B
onto the latent space. So M1 and M2 can take arbitrary value as long as
M1MT

2 ¼ Pd, where Pd is the diagonal matrix representing the variance
along each of the d latent dimensions. Therefore, we can just take M1 ¼
M2 ¼ P1=2

d .
WithWA andWB, the shared information C can be estimated using its

posterior mean EðCjAÞ and EðCjBÞ, where EðCjAÞ ¼ MT
1U

T
AA and

EðCjBÞ ¼ MT
2U

T
BB. Let M1 ¼ M2 and equate EðCjAÞ and EðCjBÞ, this

shared information can be used as a relay to build the bidirectional

mapping between A and B. Specifically, bB ¼ ðMT
2U

T
BÞyMT

1U
T
AA ¼

UTy
B UT

AA ¼ RA and bA ¼ ðMT
1U

T
AÞyMT

2U
T
BB ¼ UTy

A UT
BB ¼ RyB,

where R ¼ UTy
B UT

A.
In the first step, the connectivity map is estimated for each condition

separately. Suppose we have n1 trials in condition 1 and n2 trials in
condition 2 in the training set, the training data for the two conditions are

represented in matrices as ½Xð1Þ
A ; Xð1Þ

B �T and ½Xð2Þ
A ; Xð2Þ

B �T respectively,

where Xð1Þ
A 2 ℝmA�n1 , Xð1Þ

B 2 ℝmB�n1 are the population activity for A and

B under condition 1 respectively, and Xð2Þ
A 2 ℝmA�n2 , Xð2Þ

B 2 ℝmB�n2 are the
population activity for A and B under condition 2 respectively. The
testing data vector is then represented as ½xA; xB�T , where xA 2 ℝmA and
xB 2 ℝmB are population activities in A and B respectively. Using CCA,
the estimations of the mapping matrices with respect to different con-
ditions are Rð1Þ and Rð2Þ.

To sum up, by building the connectivity map, a linear mapping
function R(i) is estimated from the data for each condition so that the
activity of the two populations can be directly linked through bidirec-
tional functional connectivity that captures only the shared information.
2.3. Classification

The second phase of MCPA is a pattern classifier that takes in the
activity from one population and predicts the activity in a second pop-
ulation based on the learned connectivity maps conditioned upon the
stimulus condition or cognitive state. The testing data is classified into
the condition to which the corresponding model most accurately predicts
the true activity in the second population.

The activity from one population is projected to another using the
learned CCA model, i.e. xðiÞ

B ¼ RðiÞxA. The predicted projections xðiÞ
B are

compared to the real observation xB, and then the testing trial is labeled
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to the condition where the predicted and real data match most closely.
Cosine similarity (correlation) is used as the measurement of the good-
ness of prediction. The mapping is bidirectional, so A can be projected to
B and vice versa. In practice, the similarities from the two directions are
averaged in order to find the condition that gives maximum average
correlation coefficient.
2.4. Simulated experiment

2.4.1. Simulations to evaluate the general performance of MCPA
To test the performance of MCPA, we used BOLD signal recorded from

areas V1 and V2 to simulate shared and local activity in two populations
and tested the performance of MCPA on synthetic data as a factor of the
number of dimensions in each population and signal-to-noise ratio (SNR;
Fig. 2a). We further evaluated three control experiments to demonstrate
that MCPA is insensitive to the presence or change in the local
information.

For the first simulation (Fig. 2a), we sampled from the empirical
distribution of BOLD signal recorded from area V1 in the visual cortex
and used it as the shared activity, and independently sampled signal from
the empirical distributions of activity in V1 and V2 as the local unshared
activity. (See fMRI method described below for experiment details). The
shared activity for both conditions in population A was drawn from the
empirical distribution of the first d principal components of V1 activity to
mimic a d-dimensional normal distribution YðiÞ

A � N ð0;ΣdÞ; for i ¼ 1; 2,
where Σd is a diagonal matrix with the jth element in the diagonal as σ2j .
The shared activity in population B under two different conditions were
generated by rotating YA with different rotation matrices separately,

Y ðiÞ
B ¼ RðiÞY ðiÞ

A , where Rð1Þ and Rð2Þ were two d-by-d random rotation
matrices corresponding to the information mapping functions under
condition 1 and 2 respectively, and for simplicity, RðiÞ is orthogonal with
RðiÞTRðiÞ ¼ Id. In addition to the shared activity, local activity in A and B
was randomly drawn from the empirical distributions of the first d prin-
cipal components of V1 and V2 activity respectively and multiplied by a
factor of σ to simulate white noise EðiÞ � N ð0; σ2ΣdÞ.

The two important parameters here are the dimensionality d and the
variance σ2. SNR was used to characterize the ratio between the variance
of shared activity and variance of local activity, and the logarithmic
decibel scale SNRdB ¼ �10 log10ðσ2Þ was used. To cover the wide range
of possible data recorded from different brain regions and different
measurement modalities, we tested the performance of MCPA with
d ranging from 2 to 25 and SNR ranging from�20 dB to 20 dB (σ2 ranged
from 0.01 to 100). Note that each of the d dimensions contain indepen-
dent information about the conditions and have the same SNR. Thus the
overall SNR does not change, but the amount of pooled information does
change with d. For each particular setup of parameters, the rotation
matrices RðiÞ were randomly generated first, then 200 trials were
randomly sampled for each condition and evenly split into training set
and testing set. MCPA was trained using the training set and tested on the
testing set to estimate the corresponding true positive rate (TPR) and
false positive rate (FPR) for the binary classification. The sensitivity index
d0 was then calculated as d0 ¼ ZðTPRÞ � ZðFPRÞ, where Z(x) is the inverse
function of the cdf of standard normal distribution. This process was
repeated 100 times and the mean and standard errors across these 100
simulations were calculated. Note that the only discriminant information
about the two conditions is the pattern of interactions between the two
populations, and neither of the two populations contains local discrimi-
nant information about the two conditions in its own activity. We further
tested and confirmed this by trying to classify the local activity in pop-
ulations A and B (see below). To avoid an infinity d0 value, with 100
testing trials per condition, the maximum and minimum for TPR or FPR
were set to be 0.99 and 0.01, which made the maximum possible d0 to
be 4.65.

The MCPAmethod captures the pattern of correlation between neural
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activities from populations and is invariant to the discriminant infor-
mation encoded in local covariance. To see this, we took the simulation
data described above and applied MVPA (naïve Bayes) to each of the two
populations separately. Note that in each of the two populations, we set
the two conditions to have the same mean and covariance. As a result,
there should be no local discriminant information within any of the two
populations alone.

2.4.2. Robustness of MCPA to non-informative dimensions
In addition to the existing simulations that evaluate the influence of

SNR and informative dimensionality on the performance of MCPA, we
evaluated the influence of having non-informative dimensionality on the
performance of MCPA (Fig. 2b). Specifically, we simulated 10 informa-
tive dimensions and simulated P ¼ 30 additional dimensions that were
not informative for discrimination and applied MCPA to this simulated
data without PCA. We changed the number of training samples available
for MCPA and evaluated the performance of MCPA as a factor of the ratio
between number of dimensions and the number of training samples per
condition. The intuition is that, with a fixed amount of informative di-
mensions, when the number of training samples decreases, the model
would suffer from overfitting and the performance would decay.

2.4.3. Control simulations
For the first control simulation (Fig. 2c), we fixed the dimensionality

at d¼ 10 and SNR at 0 dB (σ2 ¼ 1). For condition 1, Xð1Þ
A ;Xð1Þ

B were drawn
independently from the empirical distributions of the first d principal
components of area V1 and area V2 using the corresponding empirical

distributions; for condition 2, Xð2Þ
A ;Xð2Þ

B were drawn independently from
the same distribution in the empirical distributions of the first d principal
components of area V1 and area V2. Then we changed the local variance
in one of the conditions. For the features in population A and B under

condition 1, we used Xð1Þ0
A ¼ kXð1Þ

A and Xð1Þ0
B ¼ kXð1Þ

B , where k ranged from
1 to 9. Thus, in both populations, the variance of condition 1 was
different from the variance of condition 2, and such difference would
increase as k became larger. Therefore, there was no information shared
between the two populations under either condition, but each of the
population had discriminant information about the conditions encoded
in the variance for any k≠1.

For the second control simulation (Fig. 2d), we fixed the dimen-
sionality at 10 and SNR at 0 dB (σ2 ¼ 1) and kept the rotation matrices of
different conditions different from each other. As a result, the amount of
shared discriminant information represented in the patterns of in-
teractions stayed constant. Then we changed the local variance in one of
the conditions. For the features in population A under condition 1, we

used Xð1Þ0
A ¼ kXð1Þ

A , where k ranged from 1 to 9. Thus, population A, the
variance of condition 1 was different from the variance of condition 2,
and such difference would increase as k became larger. According to our
construction of MCPA, it should only pick up the discriminant informa-
tion contained in the interactions and should be insensitive to the
changes in local discriminant information from any of the two
populations.

For the third control simulation (Fig. 2e), we introduced local
discriminant information into the two populations to demonstrate that
MCPA is insensitive to the presence of constantly correlated local infor-
mation (Fig. 2e). We fixed the dimensionality at 10 and SNR at 0 dB
(σ2 ¼ 1) and kept the rotation matrices constant for different conditions.
As a result, the amount of shared discriminant information represented in
the patterns of interactions was 0. Then we changed the local variance in
one of the conditions. For the features in population A and B under

condition 1, we used Xð1Þ0
A ¼ kXð1Þ

A and Xð1Þ0
B ¼ kXð1Þ

B , where k ranged from
1 to 9. Thus, in both populations, the variance of condition 1 was
different from the variance of condition 2, and such difference would
increase as k became larger. Notably, such local information was actually
correlated through interactions between the populations. However, since
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the pattern of interaction did not vary as the condition changed, there
was no discriminant information about the conditions represented in the
interactions. According to our construction of MCPA, it should not pick
up any discriminant information in this control case.

2.5. Examining visual cortex coding for natural images using MCPA

2.5.1. fMRI methods
The fMRI dataset was taken from CRCNS.org (Kay et al., 2011). See

(Kay et al., 2008; Naselaris et al., 2009) for details regarding subjects,
stimuli, MRI parameters, data collection, and data preprocessing. In the
experiment, two subjects performed passive natural image viewing tasks
while BOLD signals were recorded from the brain. The experiment con-
tains two stages: a training stage and a validation stage. In the training
stage, two separate trials were recorded in each subject. In each trial, a
total of 1750 images were presented to the subject, which yields a total of
3500 presentations of images (3500 ¼ 1750 images * 2 repeats). In the
validation stage, another 120 images were presented to the subject in 13
repeated trials, which yields a total of 1560 presentations (1560 ¼ 120
images * 13 repeats). The single-trial response for each voxel was esti-
mated using deconvolution method and used for the following analysis.
The voxels were assigned to 5 visual areas (V1, V2, V3, V4, and lateral
occipital [LO]) based on retinotopic mapping data from separate scans
(Kay et al., 2008; Naselaris et al., 2009).

2.5.2. Categorical image classification
To control for repetition of each individual image and to increase the

image number being used, we used the data from the training stage for
the categorical image classification. The 1750 images were manually
sorted into 8 categories (animals, buildings, humans, natural scenes,
textures, food, indoor scenes, and manmade objects). In order to main-
tain enough statistical power, only categories with more than 100 images
were used in the analysis. As a result, 3 categories (food, indoor scenes,
and manmade objects) were excluded.

For each pair of ROIs, namely V1-V2, V2-V3, V3-V4, and V4-LO,
MCPA was applied to classify the functional connectivity patterns for
each possible pair of image categories (total of 10 pairs). For each specific
pair of categories, BOLD signal from all the voxels in the ROIs were used
as features in MCPA. Principal Component Analysis (PCA) was used to
reduce the dimensionality to P, where P corresponds to the number of
PCs that capture 90% of variation in the data, which yielded
~100–200 PCs. Leave-one-trial-out cross-validation was used in order to
estimate the classification accuracy. This procedure was repeated for all
10 pairs. Classification accuracy and the corresponding sensitivity index
d0 were used to quantify the performance of MCPA.

2.5.3. Single image classification using MCPA
For single image classification the 13 repetitions of each individual

image from the validation stage data was used.
For each pair of ROIs, namely V1-V2, V2-V3, V3-V4, and V4-LO,

MCPA was applied to classify the functional connectivity patterns for
each possible pair of images (total of 7140 pairs). For each specific pair of
categories, BOLD signal from all the voxels in the ROIs were used as
features in MCPA. Considering the limited number of trials in each
condition, PCA was first used with the data from the training stage to
reduce the representation dimensionality to 10. Because the top PCs that
explain most variations may contain variance not related to the stimuli,
the 10 PCs were selected from the top 50 PCs, based on maximizing the
between-trial correlations for single images. As a result, we reduced the
dimensionality of the validation data from more than 1000 to 10 based
on the training dataset, which was completely independent from all the
validation data that was used in the learning and testing stages of MCPA.
Leave-one-out cross-validation was then used in order to estimate the
classification accuracy. This procedure was repeated for all 7140 pairs.
Classification accuracy and the corresponding sensitivity index d0 were
used to quantify the performance of MCPA.

http://CRCNS.org
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2.5.4. MVPA analysis
MVPA was applied to classify the neural activity within each ROI (V1,

V2, V3, V4, and LO) or from a pair of ROIs simultaneously (V1-V2, V2-V3,
V3-V4, and V4-LO) for each possible pair of categories (total of 10 pairs).
The same features extracted from all the voxels within the ROI, as
described above, were used in MVPA analysis. Naïve Bayes classifier was
used as the linear classifier and leave-one-out cross-validation was used
in order to estimate the classification accuracy. This procedure was
repeated for all 10 pairs. Classification accuracy and the corresponding
sensitivity index d0 were used to quantify the performance of MVPA.

2.5.5. Permutation test
Permutation testing was used to evaluate the significance of the

classification accuracy d0. For each permutation, the condition labels of
all the trials were randomly permuted and the same procedure as
described above was used to calculate the classification accuracy (d0) for
each permutation. The permutation was repeated for a total of 1000
times. The classification accuracy (d0) of each permutation was used as
the test statistic and the null distribution of the test statistic was esti-
mated using the histogram of the permutation test.

2.5.6. Representational similarity analysis
Based on the classification results, for each classification analysis, the

representational dissimilarity matrix (RDM)M was constructed such that
the jth element in the ith row, mij , equals the dissimilarity (classification
accuracy) between the condition i and condition j in the corresponding
representational space defined by the analysis. Spearman's rank corre-
lation was used to compare representational dissimilarity matrices in
order to account for outliers and non-normality in the data.

2.5.7. Psychophysiological interactions
PPI (Friston et al., 1997) was used to analyze the pattern of in-

teractions between V1, V2, V3, V4, and LO for each pair of image cate-
gories (total of 10). The response in each ROI was extracted by taking the
first principal component across all voxels. The PPI model can be written
as y ¼ β1x1 þ β2x2 þ β3x3 þ ε, where y is the response in ROI2, x1 is the
response in ROI1, x2 is the categorical condition (1 or �1), and x3 is the
psychophysiological interaction (x3 ¼ x1⋅x2).

2.5.8. HMAX model and connectivity patterns
The implementation of HMAX model by Serre et al. (2007) was used.

Each image was fed into the network and the activations in the four
layers (S1, C1, S2, and C2) were recorded. At each patch size level, for
image k (k ¼ 1, 2,…, 120), the activation pattern in simple layer i (i ¼ 1,
2) is recorded as Ski , which is a square matrix with retinotopic mapping to
the image space. On the other hand, the activation pattern in complex
layer i (i ¼ 1, 2) is represented as vector Ck

i with each element repre-
senting the activation of one single unit (for C1, this is achieved by
concatenating all the units in the layer into one vector). The activation of
each unit in the complex layer was calculated by taking a maximum over
its corresponding pool of units in the previous simple layer. For each
complex unit, we recorded the location of the corresponding maximum
activation simple unit. As a result, we got a Ni-by-2 connectivity matrix
Vk
i for complex layer Ci for image k, where Ni is the total number of units

in Ci and each row is the 2-D coordinate of the corresponding maximum
activation simple unit. Thus, the connectivity pattern between simple
layer Si and complex layer Ci for image k was described by such con-
nectivity matrix Vk

i . Considering all pairs of images, the RDM of the
connectivity patternMi is calculated by taking the Frobenius norm of the
difference between each pair of connectivity matrix,

i.e. Mið j; kÞ ¼ kVj
i � Vk

i k2.
The representation space for each single layer was then extracted by

concatenating all units in the layer into one vector. The RDM of each
single layer was calculated using the Euclidian distance between the
corresponding activation vectors of the images.
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2.5.9. Representational similarity analysis and permutation test
Permutation test was used to determine the statistical significance of

the correlation between the RDM from MCPA and the RDM from HMAX.
Specifically, for each pair of ROIs (i.e. V1-V2, V2-V3, V3-V4, and V4-LO),
we calculated the corresponding 120-by-120 RDM for all the images from
MCPA and averaged across the two subjects, noted as MROI1�ROI2, where
ROI1-ROI2¼ V1-V2, V2-V3, V3-V4, or V4-LO. Then we used the RDMs of
HMAX (Mi, i ¼ 1, 2) described in the previous part and calculate the
Spearman's rank correlation between MROI1�ROI2 and Mi. As a result, we
have ρROI1�ROI2

i ¼ corr
�
MROI1�ROI2;Mi

	
. Then to compare the correlation

from different layers in HMAX to MCPA, we use ΔρROI1�ROI2 ¼
ρROI1�ROI2
1 � ρROI1�ROI2

2 as the test statistic. For each permutation, the
labels of the 120 images were randomly permuted and the above pro-
cedure was repeated. With a total of 1000 permutations, we got the
empirical distribution of the test statistic for the null hypothesis that
there is no difference between the two correlations. A p-value for the real
test statistic was then estimated.
2.6. Examining OFA-FFA coding for individual faces using MCPA

2.6.1. Subject
A human subject underwent surgical placement of iEEG depth elec-

trodes (stereotactic electroencephalography) into the right temporal lobe
as standard of care for surgical epilepsy localization. The subject was a 56
year-old male. No epileptiform discharges or other evidence of epileptic
activity were recorded from the electrode contacts used in this study.

The experimental protocols were approved by the Institutional Re-
view Board of the University of Pittsburgh. Written informed consent was
obtained from the participant.

See Supplementary Materials for analysis details.

3. Results

3.1. Simulations

We used simulations to test and verify the performance and properties
of MCPA on synthetic data. Specifically, synthetic data generated based
on real fMRI data was manipulated to construct different simulated
conditions.

In the first simulation, we evaluated the ability of MCPA to detect
information represented in the functional connectivity pattern when it
was present, as a factor of the SNR and the number of dimensions of the
data. The mean and standard error of the sensitivity index (d0) from 100
simulation runs for each particular setup (dimensionality and SNR) are
shown in Fig. 2a. The performance of the MCPA classifier increased when
SNR or effective dimensionality increased. Classification accuracy satu-
rated to the maximum when SNR and number of dimensions were high
enough (SNR > 5 dB, dimensionality > 10). The performance of MCPA
was significantly higher than chance (p < 0.01, permutation test) for
SNRs above�5 dB for all cases where the dimensionality was higher than
2, when the pattern of the multivariate mapping between the activity was
changed between conditions.

Next we examined how robust MCPA is to uninformative dimensions.
This simulation assessed the performance of MCPA as the number of
training samples changes and approaches the total number of di-
mensions. MCPA was shown to be highly robust to uninformative di-
mensions and gave significant classification accuracy until the ratio
between the number of total dimensions and the number of training
samples approached ~80% (Fig. 2b).

The first control simulation was designed to confirm that when two
unconnected populations both carry local discriminant information,
MCPA would not be sensitive to that information. As shown in Fig. 2c,
MCPA did not show any significant classification accuracy above chance
(d0 ¼ 0) as k changed. On the other hand, the MVPA classifier that only
took the data from local activity showed significant classification



Fig. 2. Synthetic data and control simulation experiments. The mean and standard error for 100 simulation runs are plotted. The horizontal gray line corresponds to chance level
(d0 ¼ 0). The dashed line (d0 ¼ 0.42, corresponding accuracy 58.5%) corresponds to the chance threshold, p ¼ 0.01, based on a permutation test. The maximum possible d0 ¼ 4.65
(equivalent to 99% accuracy because the d0 for 100% accuracy is infinity). (a) The sensitivity of MCPA for connectivity between two populations as a factor of SNR and the number of
effective dimensions in each population. MCPA was applied to synthetic data, where two conditions had different patterns of functional connectivity (measured by SNR and dimen-
sionality). Performance of MCPA was significantly higher than chance level when SNR > �5 dB and the number of dimensions >2. Performance of MCPA saturated to maximum when
SNR > 5 dB and the number of dimensions >10. (b) The robustness of MCPA to non-informative dimensions. The signal was generated in a lower dimensional manifold (# dim ¼ 10), and
P ¼ 30 non-informative dimensions were added to the space. # of (training) samples per condition is changing between 40 and 300. (c) The insensitivity of MCPA when there is variable
local discriminant information, but no circuit-level information (control case 1). MCPA and MVPA were applied to control case 1. The SNR was fixed at 0 dB and the number of dimensions
is fixed at 10 for panels b, c, and d. k corresponds to the ratio of the standard deviations of the two conditions in panels b, c, and d. (d) The insensitivity of MCPA to changes in local
discriminant information with fixed circuit-level information when there is both local and circuit-level information (control case 2). (e) The insensitivity of MCPA to variable local
discriminant information when the circuit-level activity is correlated, but does not contain circuit-level information about what is being processed (control case 3).

Y. Li et al. NeuroImage 162 (2017) 32–44
accuracy above chance level and the performance increased as local
discriminant information increased.

The second control simulation tested if MCPA is insensitive to
changes in local discriminant information when there is constant infor-
mation coded in neural communication. Local discriminant information
was injected into the populations by varying the ratio of the standard
deviation (k) between the two conditions. When MVPA was applied to
the local activity, increasing classification accuracy was seen as k became
larger (Fig. 2d). This result confirmed that discriminant information was
indeed encoded in the local activity in the simulation. On the other hand,
the performance of MCPA did not change with the level of local
discriminant information (d0 stayed around 1.65 for all cases, corre-
sponding to accuracy¼ 79%), demonstrating that MCPA is only sensitive
to changes in information contained in neural interactions.

The final control simulation tested whether MCPA is simply sensitive
to the presence of functional connectivity between two populations per se
or is only sensitive to whether the functional connectivity contains
discriminant information. Specifically, are local discriminant informa-
tion in two populations, and a correlation between their activity, suffi-
cient for MCPA decoding? It should not be, considering that MCPA
requires that the pattern of the mapping between the populations to
change as a factor of the information being processed (see Fig. 1). The
38
final control simulation assessed whether MCPA is sensitive to the case
where two populations communicate, but in a way that does not imply
distributed computational processing. Specifically, neural activity in
areas A and B were simulated such that local discrimination was possible
in each population and the activity of the two populations was correlated,
but the interaction between them was invariant to the information being
processed. Fig. 2e shows that in this case MCPA did not classify the ac-
tivity above chance, despite significant correlation between the regions
and significant local classification (MVPA). Thus, functional connectivity
between the populations is a necessary, but not sufficient, condition for
MCPA decoding. Therefore, MCPA is only sensitive to the case where the
mapping itself changes with respect to the information being processed,
which is a test of the presence of distributed neural computation.

3.2. Single image classification of visual cortex interactions using MCPA

To assess its performance on real neural data, MCPA was applied to
Blood-oxygen-level-dependent (BOLD) fMRI measurements of human
occipital visual areas, in two subjects (Subject 1 and Subject 2) during
passive viewing of 13 repetitions of 120 natural images (Kay et al., 2008,
2011; Naselaris et al., 2009). MCPAwas used for single-trial classification
of these images for the interactions between V1-V2, V2-V3, V3-V4, and
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V4-lateral occipital (LO) cortex (e.g. 4 total region pairs * 2 subjects; see
Fig. 5 of Naselaris et al. (2009). for depictions of these regions in these
subjects). Across the 8 pairs of regions the mean sensitivity index (d0) of
the single trial classification was 0.405 (s.d.¼ 0.094), with all of the pairs
showing significant classification at p < 0.01 corrected for multiple
comparisons (permutation test). In both subjects, MCPA classification
accuracy declined going up the classic visual hierarchy. The classification
accuracies are shown in Table 1 and statistical tests for the canonical
correlations are reported in the Supplementary Results.
Fig. 3. Correlating MCPA and HMAX. Correlation coefficients between the between-
layer connectivity patterns in HMAX (S1-C1, and S2-C2) and the between-area connec-
tivity patterns in fMRI data extracted by MCPA (V1-V2, V2-V3, V3-V4, and V4-LO) were
plotted. The correlation was evaluated by Spearman's rank correlation coefficients. For S1-
C1, correlation peaked at V2-V3, mean Spearman's rho ¼ 0.053 (*p ¼ 0.036, permutation
test within each subject, and p-values were combined using Fisher's method). For S2-C2,
correlation peaked at V4-LO, mean Spearman's rho ¼ 0.112 (**p ¼ 0.001, permutation
test within each subject, and p-values were combined using Fisher's method).
3.3. Using MCPA-based RSA to test models of between-area information
transformation

One important application of MCPA is to evaluate models and test
theoretical hypotheses regarding the computational operation underly-
ing how representations are transformed from one region to another.
MCPA-based representational similarity analysis (RSA) can be used to
compare the representational space derived from the interaction be-
tween brain regions to representational spaces derived from the trans-
formation of representations in computational models. To illustrate this
we compare the representational space for natural images in the same
fMRI dataset described above to the representational space derived from
the transformation between layers of the HMAX model of the visual
processing stream (Riesenhuber and Poggio, 1999; Serre et al., 2007).
HMAX has four layers going from S1 to C1 to S2 to C2 along the hi-
erarchy. The transformation of the representation between S1 and C1
(S1-C1 transformation) occurs through a local, non-linear max-pooling
operation and the transformation between S2 and C2 (S2-C2 trans-
formation) occurs through a more global non-linear max-pooling oper-
ation. We compared the representational dissimilarity matrices (RDMs)
derived from these HMAX transformations to the RDMs derived from
MCPA between V1-V2, V2-V3, V3-V4, and V4-LO. The transformation
between C1 and S2 occurs through a passive filtering that does not give
rise to an RDM because the transformation is effectively the same across
all C1 representations.

As shown in Fig. 3, we found that the RDM derived from the S1-C1
transformation in HMAX correlates with the V2-V3 RDM based upon
MCPA of the fMRI data (mean Spearman's rho ¼ 0.053, p < 0.05, per-
mutation test). Furthermore, the S1-C1 correlation to V2-V3 was signif-
icantly greater (p < 0.05, permutation test) than the S2-C2 correlation to
V2-V3. The RDM derived from the S2-C2 transformation in HMAX cor-
relates with the V4-LO RDM based upon MCPA of the fMRI data (mean
Spearman's rho ¼ 0.112, p ¼ 0.002, permutation test). Furthermore, the
S2-C2 correlation to V4-LO was significantly greater (p < 0.01, permu-
tation test) than the S1-C1 correlation to V4-LO. Additionally, none of the
individual layers in HMAX showed a consistent significant correlation
with the connectivity-based RDM from MCPA. Taken together, these
results suggest that the interaction between the lower layers of the neural
visual hierarchy reflects an operation more like the operation between
the lower layers of the model of the visual hierarchy than between higher
layers of the model. Furthermore, the interaction between higher layers
of the neural visual hierarchy reflects an operation more like the oper-
ation between higher layers of the model than between lower layers of
the model.
Table 1
Mean d0 and classification accuracy of MCPA for Subject 1 and Subject 2 (chance level:
d0 ¼ 0, accuracy ¼ 50%).

Subject 1
ROI1-ROI2 V1-V2 V2-V3 V3-V4 V4-LO
d0 0.477 0.443 0.408 0.319
accuracy 58.5% 57.9% 57.3% 55.7%
Subject 2
ROI1-ROI2 V1-V2 V2-V3 V3-V4 V4-LO
d0 0.589 0.470 0.330 0.271
accuracy 60.3% 58.5% 55.9% 54.9%
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3.4. Comparing the between region representation to the local
representation

To assess whether the information represented in the between region
interactions reflected a distinct computational process or merely re-
flected the representation in either of the individual areas, RSA was
performed. To increase our power, we performed this RSA at the category
level (animals, buildings, humans, natural scenes, and textures) based on
classification accuracy rather than the single image level because the
dataset contained many more repetitions per category than per image
(Fig. 4). This yielded a total of 24 correlations (8 MCPA-based matrices
correlated with each of the two regions that contribute to eachMCPA and
with MVPA that takes the two regions together). 20 out of the 24 cor-
relations were negative, many showing large negative correlation co-
efficients (see Table 2 for details and see Supplementary Results for and
effect size calculations [Wilks’λ] and statistical tests for the canonical
correlations, mean Spearman's rho ¼ �0.420, s.d. ¼ 0.346). In other
words, categories that were relatively easy to decode based on the ac-
tivity within regions usingMVPAwere relatively more difficult to decode
based on the shared activity between that region and the other regions in
the visual stream using MCPA and vice versa (Fig. 4). This negative
correlation may suggest that the communication between regions rep-
resents information that has not been explained aspects by local
computational processes.

3.5. Comparing MCPA to PPI

To compare MCPA to classical univariate methods, we applied both
MCPA and PPI to the same data to analyze categorical effective analysis
between neighboring areas. 80 different pairs of categories (10 pairs of
categories * 4 pairs of regions * 2 subjects) were analyzed using both PPI
andMCPA. 4/80 PPI results were significant with p < 0.05 (uncorrected),
while 13/80 MCPA results were significant with p < 0.05 (uncorrected).
As a result, the number of significant MCPA results is significantly larger
than the number of significant PPI results (p < 0.01, permutation test).
Note that it is not clear howmany of these 80 different pairs of categories
are expected to be classifiable given that the regions examined are not
category sensitive, other than LO. Thus, it is not clear if 13/80 is close to
the number of category pairs that would be classifiable with perfect data
or if this is a low percentage of that number, but the key point in the
context of validating MCPA is that MCPA is substantially more sensitive
than univariate (PPI) methods.



Fig. 4. MCPA and MVPA results for fMRI categorical data. RSA results based on MCPA and MVPA for V1, V2, V3, V4, and LO from Subjects 1 and 2. Categories: A-animals, B-buildings,
H-humans, S-natural scenes, T-textures. Row 1: RSA based on MCPA for V1-V2, V2-V3, V3-V4, and V4-LO of Subject 1, each entry represents the classification accuracy between the
corresponding categories; Row 2: RSA based on MVPA with two ROIs at a time (V1- V2, V2- V3, V3-V4, and V4-LO) of Subject 1, each entry represents the classification accuracy between
the corresponding categories; Row 3: RSA based on MVPA with one ROI at a time (V1, V2, V3, V4, and LO) of Subject 1, each entry represents the classification accuracy between the
corresponding categories; Row 4: RSA based on MCPA for V1-V2, V2-V3, V3-V4, and V4-LO of Subject 2, each entry represents the classification accuracy between the corresponding
categories; Row 5: RSA based on MVPA with two ROIs at a time (V1- V2, V2- V3, V3-V4, and V4-LO) of Subject 2, each entry represents the classification accuracy between the cor-
responding categories; Row 6: RSA based on MVPA with one ROI at a time (V1, V2, V3, V4, and LO) of Subject 2, each entry represents the classification accuracy between the cor-
responding categories. (chance level: accuracy ¼ 50%).

Table 2
Spearman's rank correlation coefficients between MCPA of ROI1-ROI2 and MVPA of ROI1
and ROI2 in Subjects 1 and 2.

Subject 1
ROI1-ROI2 V1-V2 V2-V3 V3-V4 V4-LO
MVPA (both ROIs) 0.333 �0.527 �0.576 �0.309
MVPA (ROI1 only) 0.333 �0.055 �0.721 �0.442
MVPA (ROI2 only) 0.176 �0.370 �0.491 �0.442
Subject 2
ROI1-ROI2 V1-V2 V2-V3 V3-V4 V4-LO
MVPA (both ROIs) �0.685 �0.673 �0.479 �0.527
MVPA (ROI1 only) �0.539 �0.758 �0.782 �0.539
MVPA (ROI2 only) �0.855 �0.794 �0.418 0.055
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3.6. Single face identity classification of OFA-FFA interactions using
MCPA

To further assess its performance on electrophysiological data, MCPA
was applied on intracranial electroencephalography (iEEG) data recor-
ded from OFA and FFA in one human epileptic patient during a visual
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perception task (see Fig. 5a for the electrode locations). MCPA was
applied in the classification between each possible pair of faces. Previous
studies on the timecourse of face individuation (Ghuman et al., 2014)
have demonstrated that the 250–450 ms time window is critical for the
processing of face individuation information. For MCPA, as shown in
Fig. 5b, with a chance level of d0 ¼ 0 and corresponding accuracy¼ 50%,
the classification accuracy was significantly above chance level across
that time window (averaged d0 ¼ 0.14, mean classification accuracy
52.7%, p < 0.01, permutation test). The CCA weights for the FFA and
OFA are plotted in Fig. 5c, showing that 15–30 Hz in FFA and 25–40 Hz
in OFA contributed most strongly to their interaction in response to in-
dividual faces, suggesting that there may be a degree of cross-frequency
coupling involved in the OFA-FFA coding for faces. Using MVPA, clas-
sification accuracy was significantly above chance level across that time
window in FFA (averaged d0 ¼ 0.42, mean accuracy 58%, p < 0.01,
permutation test), replicating previous reports (Ghuman et al., 2014),
classification accuracy was also above chance level across that time
window in OFA (averaged d0 ¼ 0.13, mean accuracy 52.6%, p < 0.05,
permutation test). In the early time window (50–250 ms), MCPA did not



Fig. 5. iEEG experiments and MCPA results. (a) Location of the electrodes of interest. The blue dot corresponds to the location of the FFA contact while the red dot corresponds to the
location of the OFA contacts. (b) MCPA applied between (1) the OFA and FFA channels, (2) the FFA channel and the control channel, (3) the OFA channel and the control channel. The
mean d0 of pairwise face classification over all 2415 pair of faces across the 250–450 ms timewindow after stimulus onset is plotted. *p < 0.01, permutation test. (c) Averaged absolute
loading weights in the functional connectivity model of MCPA for OFA and FFA across the frequency spectrum during the time window of 250–450 ms after stimulus onset. (chance level:
d0 ¼ 0, accuracy ¼ 50%).
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show significant classification accuracy (averaged d0 ¼ 0.116, mean ac-
curacy 51.6%, p > 0.1, permutation test). See Supplementary Results for
statistical testing of the single face canonical correlation models.

As a control analysis, we took a contact outside of the fusiform gyrus
that did not show face sensitivity and performed the same analysis be-
tween the control contact and the OFA and FFA contacts. As shown in
Fig. 5b, the averaged d0 of MCPA between the control contact and both
the OFA and FFA contacts was not significant above chance level
(d0 ¼ 0.074 for control& FFA, accuracy¼ 51.2%, d0 ¼ 0.012 for control&
OFA, accuracy ¼ 50.3%, both p > 0.1, permutation test).

With the caveat that the effect size is small, the results support the
hypothesis individual level face information is represented in the OFA-
FFA interaction pattern.

4. Discussion

This paper presents a novel method to assess the information repre-
sented in the patterns of interactions between two neural populations.
MCPA works by learning the mapping between the activity patterns from
the populations from a training data set, and then classifying the neural
communication pattern using these maps in a test data set. Simulated
data demonstrated that MCPA was sensitive to information represented
in neural interaction for realistic SNR ranges. Furthermore, MCPA is only
sensitive to the discriminant information represented through different
patterns of interactions irrespective of the information encoded in the
local populations. Applying this method to fMRI data demonstrated that
the multivariate connectivity patterns between areas along the visual
stream represent information about individual natural images. MCPA-
based RSA showed that, at the category level, the representational
structure of the interaction between regions is negatively correlated to
the representational structure locally within each region. Furthermore,
MCPA was used to test hypotheses from the HMAX model regarding the
computational operation that transforms the representation between
regions along the visual processing pathway. Finally, as an example with
electrophysiological data, applying MCPA to iEEG data showed that the
multivariate connectivity pattern between OFA and FFA represents in-
formation at the level of individual faces.

One practical consideration with MCPA is that CCA generally requires
the number of trials to be substantially larger than the number of vari-
ables in the two areas. This is often not the case in neuroscientific studies
and therefore dimensionality reduction may be required. In the optimal
case, this dimensionality reduction would be performed in the canonical
space reducing the number of canonical variables used in MCPA-based
classification. However, we find that performing a PCA to reduce
dimensionality prior to CCA generally performs better than reducing the
dimensionality in the canonical space, which is in line with previous in
neuroscientific studies using CCA (Karageorgiou et al., 2012; Smith et al.,
2015). While it is not entirely clear why PCA before CCA performs better
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than dimensionality reduction using CCA alone, it is likely because CCA
is known to be very sensitive to noise (Anderson, 1958; Gittins, 1985)
and using PCA for dimensionality reduction can reduce noise.

4.1. MCPA as assessing adaptive processing

Significant discrimination within each population and significant
functional connectivity between them is not sufficient to produce MCPA
and indeed local classification within each population is not even
necessary (Fig. 2a and e respectively). MCPA requires the pattern of
connectivity (linear correlations) between the two populations to vary
across the different conditions. In other words, MCPA is sensitive to
both the degree of functional connectivity in the conditions and how
distinct the mappings are across conditions. As an example, if the two
populations interact, but the interaction behaves like a passive linear
filter, mapping the activity between the populations in a similar way in
all conditions, MCPA would not be sensitive to the interaction because
the mapping does not change (Fig. 2e). Instead, MCPA is more akin to
testing for non-constant linear filtering or distributed, interactive
computation that behaves as a non-linear process where the nature of
the interaction adapts (from a linear perspective) as a factor of the in-
formation that is being processed. Recent studies demonstrate that
neural populations in perceptual areas alter their response properties
based on context, task demands, etc. (Gilbert and Li, 2013). These
modulations of response properties suggest that lateral and
long-distance interactions are adaptive and dynamic processes respon-
sive to the type of information being processed. In this context adaptive
is meant purely in the sense that the linear transformation between the
multivariate activity in the two regions change as a factor of condition.
As noted previously, this is equivalent to a non-linear filter and
“adaptive” denotes that information is added to the representation in an
information theoretic sense. Adaptive does not necessarily imply active
changing of connections in a neuroscientific sense, and the structural
connectivity certainly does not change in the timeframes measured in
typical functional neuroscientific studies. MCPA provides a platform for
examining the role of interregional connectivity patterns in this type of
adaptive process. Indeed, MCPA can be interpreted as testing whether
distributed computational “work” is being done in the interaction be-
tween the two populations (Friston et al., 1997) and the interaction
does not just reflect a passive relay of information between two
encapsulated modules (Fodor, 1983).

Passive linear filters do not allow for information to be added to the
representation through computational work being done in the interac-
tion between regions. Sensitivity to this type of computation is a central
appeal of fully non-linear models of neural representation and neural
interactions, such as deep neural network approaches. However, these
approaches often require tens of thousands or even millions of trials
before they achieve good performance (Goodfellow et al., 2017), which
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is impractical for most neuroscientific applications. MCPA is not sensitive
to multivariate non-linear interactions within conditions, but is sensitive
to multivariate non-linear relationships between the interregional
interaction pattern and the conditions. This is effectively a piecewise
linear approximation of the underlying nonlinear function relating the
condition space to the interaction pattern between regions. This restric-
tion relative to deep neural network and other non-linear function
approximation approaches allows MCPA to performwell with reasonable
numbers of trials (10s of trials in our examples), which is critical for
being practically useful in neuroscience. Thus, one strength of MCPA is
the ability to capture some key aspects of non-linear neural computations
without requiring an impractical amount of data.

4.2. MCPA and representation space

In addition to allowing one to infer whether distributed computa-
tional work is being done in service of information processing, MCPA
provides a platform for assessing its representational structure (Haxby
et al., 2014). Much as MVPA has been used in representational similarity
analyses to measure the structure of the representational space at the
level of local neural populations (Edelman et al., 1998; Kriegeskorte,
2011; Kriegeskorte and Kievit, 2013), MCPA can be used to measure the
structure of the representational space at the level of network in-
teractions. Specifically, the representational geometry of the interaction
can be mapped in terms of the similarity among the multivariate func-
tional connectivity patterns corresponding to the brain states associated
with varying input information. The representational structure can be
compared to behavioral measures of the structure to make
brain-behavior inferences and assess what aspects of behavior a neural
interaction contributes to. It can also be compared to models of the
structure to test theoretical hypotheses regarding the computational role
of the neural interaction (Kriegeskorte, 2011; Kriegeskorte et al., 2008).
By comparing the representational space in models to the neural repre-
sentation, one can assess how well these models approximate the neural
representation in both absolute and relative terms. Much the way
MVPA-based RSA analyses have been used to examine these models at
the level of individual brain regions (Kriegeskorte et al., 2008), RSA
analyses can be used to assess how well the representation inferred by
these models' transfer functions fit the representation measured in the
brain using MCPA.

The MCPA-based RSA analysis presented here relating the represen-
tational space derived from the interaction between regions of the visual
processing stream to the transformation operations in HMAX is a con-
crete example of how MCPA can be used to test models of how repre-
sentations are transformed between regions. This example also helps
illustrate the underlying hypothesis being tested by MCPA: that there is a
non-constant linear function that relates how the transformation of the
activity between regions changes with respect to the experimental con-
dition. A non-constant linear function is analogous to a local linear
approximation of a non-linear function, as in the example with HMAX.
The existence of this non-constant linear function is what allows for in-
formation to be added to the representation through distributed
computational work. By comparing the MCPA-based representational
space to models of this function, we can gain insight into what this
transformation function might be. For example, in the case of the S1-C1
transformation HMAX, this function is a local, non-linear max-pooling
operation and in the case of the S2-C2 operation it is a more global, non-
linear max-pooling operation (Riesenhuber and Poggio, 1999). This
example suggests one mechanism by which a network with fixed struc-
tural connectivity can give rise to adaptive communication, namely
through a non-linear transformation operation that are adaptive in a
linear sense. In addition to testing specific hypothesis-driven trans-
formation operations, such as the ones in HMAX, more data-driven
models of the transformation operations, such as ones in deep neural
network models (Yamins et al., 2014), could also be tested using the
MCPA-based RSA approach.
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4.3. Relationship between MCPA and other functional connectivity/
multivariate methods

These two properties of MCPA, 1) being able to assess distributed
computational processing rather than just whether or not areas are
communicating and 2) being able to determine the representational
structure of the information being processed, set MCPA apart from pre-
viously proposed functional connectivity methods. In these previous
methods the functional connectivity calculation is performed separately
from the classification calculation. Specifically, either functional con-
nectivity is first calculated using standard methods, then a model is built
on the population of connectivity values and this model is tested using
classification approaches (Finn et al., 2015; Richiardi et al., 2011;
Rosenberg et al., 2016; Shirer et al., 2012; Wang et al., 2015) or the
model is first built on the activity in each region and tested using clas-
sification approaches and the classification performance is correlated
(Coutanche and Thompson-Schill, 2013; Kriegeskorte and Kievit, 2013).
These methods are very useful for assessing how differences in large-scale
patterns of connectivity relate to individual subject characteristics (e.g.
connectome fingerprinting) in the first case and comparing the repre-
sentational structure between regions in the second case. In contrast, in
MCPA the model is the connectivity map and classification is done to
directly test the information contained in these maps. The separation of
the connectivity and classification calculations in other approaches pre-
cludes being able to assess distributed computational processes because
these methods are sensitive to passive information exchange between
encapsulated modules, as described above, and thus conflate passive and
adaptive communication. Critically, they do not specifically probe how
connectivity patterns change as a factor of condition or state, as is
required to efficiently perform the representational similarity analysis in
a practical manner and decode how the information processed in the
interaction is encoded and organized. As a concrete example, these
previous methods would not be able to compare the representational
structure of the neural interaction between regions to the structure from
a computational model, as was done here with fMRI.

MCPA can be roughly considered a multivariate extension of PPI with
the addition of a prediction and classification framework. Compared to
PPI, which is univariate, MCPA allows one to exploit the multivariate
space of interaction patterns. As a result, MCPA is sensitive to aspects of
information coded in interregional interactions that PPI may not be able
to detect (Norman et al., 2006), for example in event-related fMRI de-
signs where PPI is known to lack statistical power (O'Reilly et al., 2012).
Indeed, in the fMRI data presented here, PPI was no better than chance in
detecting interregional interactions at the visual category level, whereas
MCPA was significantly better than chance. Much the way MVPA allows
one to go beyond ANOVAs/t-tests in a single area/population (e.g. single
trial classification, RSA, complex model testing), MCPA allows one to go
beyond PPI and do these types of analyses at the level of the shared ac-
tivity between regions.

The specific instantiation of MCPA presented here treats connectivity
as a bi-directional linear mapping between two populations. However,
the MCPA framework could be easily generalized into more complicated
cases. For example, instead of using correlation-based methods like CCA,
other directed functional connectivity algorithms, such as Granger cau-
sality based on an autoregressive framework, potentially using partial
CCA for the time-lagged autoregressive step, could be used to examine
directional interactions. This would allow one to examine time-lagged
multivariate connectivity patterns to infer directionality. Additionally,
kernel methods, such as kernel CCA (Hardoon et al., 2004), or deep
learning methods, such as deep CCA (Andrew et al., 2013), could be
applied to account for within condition non-linear interactions. Another
possible and more general framework would be to use non-parametric
functional regression method to build a functional mapping between
the two multidimensional spaces in the two populations. MCPA can also
be expanded to look at network-level representation by implementing the
multiset canonical correlation analysis, wherein the cross-correlation
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among multiple sets of activity patterns from different brain areas is
calculated (Kettenring, 1971). MCPA could be used with a dual search-
light approach to examine whole brain communication (Kriegeskorte
et al., 2006). Also, MCPA could be adapted by optimizing the CCA to find
the connectivity maps that uniquely describe, or at least best separate,
the conditions of interest. Furthermore, both with and without these
modification, the framework of MCPA may have a number of applica-
tions outside of assessing the representational content of functional in-
teractions in the brain, such as detecting the presence of distributed
processing on a computer network, or examining genetic or proteomic
interactions. MCPA is used here with fMRI BOLD signals and iEEG signal,
but it can be applied to nearly any neural recording modality, including
scalp electroencephalography, magnetoencephalography, multiunit
firing patterns, single unit firing patterns, spike-field coherence patterns,
to assess the information processed by cross-frequency coupling, etc.

4.4. Limitations and implication from MCPA results

One caveat with the MCPA results with real data presented here is
that many of the effect sizes are small. One likely reason for this is that for
the decoding of individual images in fMRI and faces in iEEG the number
of trials per image was very small (13 for individual images in fMRI and
15 for individual faces in iEEG). Despite the small number of trials, the
classification accuracy is roughly on a par with previous exemplar-level
individuation classification results using fMRI and iEEG (Ghuman
et al., 2014; Nestor et al., 2011; Said et al., 2010; Skerry and Saxe, 2014).
Furthermore, the HMAX-MCPA correlation is roughly on par with pre-
viously reported correlations between HMAX and single unit activity
from non-human primates (Khaligh-Razavi and Kriegeskorte, 2014;
Yamins et al., 2013). Given a larger number of trials, MCPA classification
performance should improve. The classification performance seen here
can be considered a “worst case scenario” to some extent given the low
number of trials and yet performance still was not far below what has
been previously reported using multivariate classification on these types
of data. Nonetheless, the low effect size and small number of subjects
reported here is a strong caveat to the potential neuroscientific inter-
pretation of the fMRI and iEEG data.

The MCPA results from visual cortex show that the representational
space derived from MCPA was negatively correlated to the representa-
tional space derived from MVPA from either of the local populations.
This inverse relationship is consistent with the idea that the communi-
cation between regions represents information that has not been
explained by local computational processes. With the strong caveat that
these results require replication in more subjects and assessment with
paradigms designed to directly test these hypotheses, this negative cor-
relation is consistent with the hypothesis that neural interactions code for
information not resolved in local computational processes (Friston, 2010;
Lee and Mumford, 2003; Rumelhart et al., 1986).

The current prevalent view is that face perception is mediated by a
distributed network with multiple brain areas including the OFA and
FFA. Structural and functional connectivity analysis for the core network
has shown that FFA is strongly connected to OFA (Gschwind et al., 2012;
Ishai, 2008; Pyles et al., 2013). While these results suggest the hypothesis
that face individuation may involve the interaction between these pop-
ulations (and likely other face processing regions), direct evidence for
this hypothesis has been lacking. Our results here support the hypothesis
that individual-level facial information is not only encoded by the ac-
tivity within certain brain populations, but also represented through
recurrent interactions between multiple populations at a network level.
This interaction was biased towards frequencies in the Beta and low
Gamma bands and exhibited a degree of cross-frequency coupling. This
analysis indicates that assessing cross-frequency interactions between
regions is another potential application of MCPA. In addition, MCPA
showed significant face individuation in approximately the 200–500 ms
time window after stimulus onset, but did not show any significant face
individuation in the early time window (50–200ms after stimulus onset),
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which is consistent with a previous MVPA study based on iEEG recording
from FFA only (Ghuman et al., 2014). More broadly, the fMRI and iEEG
MCPA results suggest that the computational work done in service of
visual processing occurs not only on the local level, but also at the level of
distributed brain circuits.

5. Conclusion

Previously, multivariate pattern analysis methods have been used to
analyze the sensitivity to informationwithin a certain area and functional
connectivity methods have been used to assess whether or not brain
networks participate in a particular process. With MCPA, the two per-
spectives are merged into one algorithm, which extends multivariate
pattern analysis to enable the detailed examination of information
sensitivity at the network level. Thus, the introduction of MCPA provides
a platform for examining how computation is carried out through the
interactions between different brain areas, allowing us to directly test
hypotheses regarding circuit-level information processing.
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