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Alhourani A, Wozny TA, Krishnaswamy D, Pathak S, Walls
SA, Ghuman AS, Krieger DN, Okonkwo DO, Richardson RM,
Niranjan A. Magnetoencephalography-based identification of func-
tional connectivity network disruption following mild traumatic brain
injury. J Neurophysiol 116: 1840–1847, 2016. First published July 27,
2016; doi:10.1152/jn.00513.2016.—Mild traumatic brain injury
(mTBI) leads to long-term cognitive sequelae in a significant portion
of patients. Disruption of normal neural communication across func-
tional brain networks may explain the deficits in memory and atten-
tion observed after mTBI. In this study, we used magnetoencepha-
lography (MEG) to examine functional connectivity during a resting
state in a group of mTBI subjects (n � 9) compared with age-matched
control subjects (n � 15). We adopted a data-driven, exploratory
analysis in source space using phase locking value across different
frequency bands. We observed a significant reduction in functional
connectivity in band-specific networks in mTBI compared with con-
trol subjects. These networks spanned multiple cortical regions involved
in the default mode network (DMN). The DMN is thought to subserve
memory and attention during periods when an individual is not engaged
in a specific task, and its disruption may lead to cognitive deficits after
mTBI. We further applied graph theoretical analysis on the functional
connectivity matrices. Our data suggest reduced local efficiency in dif-
ferent brain regions in mTBI patients. In conclusion, MEG can be a
potential tool to investigate and detect network alterations in patients with
mTBI. The value of MEG to reveal potential neurophysiological bio-
markers for mTBI patients warrants further exploration.
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NEW & NOTEWORTHY

We demonstrate that 2 min of resting MEG recordings
carry adequate information to detect network changes
following mTBI and to localize the cortical areas respon-
sible for these network changes. These changes can be
reliably detected months after the initial injury (median of
8 mo) despite normal anatomical imaging.

TRAUMATIC BRAIN INJURY (TBI) represents an immense and
growing source of morbidity and mortality, accounting for

�2.5 million emergency department visits, hospitalizations,
and deaths annually in the United States (Centers for Disease
Control and Prevention 2014). Notably, mild TBI (mTBI)
accounts for 75% of all TBI cases (Centers for Disease Control
and Prevention 2003), and a considerable portion of these
patients develop persistent cognitive deficits (van der Naalt et
al. 1999; Vanderploeg et al. 2005). Strikingly little is known
about the pathophysiology underlying these cognitive symp-
toms, since conventional structural brain imaging techniques
have not been successful in identifying biomarkers of mTBI
(Van Boven et al. 2009).

Persistent postconcussion symptoms include a cluster of
somatic, affective, and cognitive symptoms (Cicerone and
Kalmar 1995). The cognitive symptoms include memory prob-
lems, difficulty in concentration, mental fogginess, fatigue, and
mental slowing. This constellation of symptoms represents
diverse higher cognitive functions distributed across different
functional cortical networks. The heterogeneity of mTBI
mechanisms suggests that common network disruptions could
explain this relatively reproducible cluster of symptoms, rather
than localized injury to any particular brain region (Sharp et al.
2014). Higher-order cognitive functions involve efficient in-
formation processing across spatially disparate neuronal pop-
ulations. The theory of communication through coherence
(Fries 2015) proposes that this long-range information transfer
is facilitated by synchronization in the phase of local neuronal
oscillations between functionally connected nodes. Functional
connectivity within brain networks, therefore, can be identified
through measures of interregional synchrony.

Functional imaging modalities are powerful tools that can
complement standard structural imaging, such as CT and MRI,
by measuring interregional synchrony in brain function. Mag-
netoencephalography (MEG), specifically, is capable of
quickly and noninvasively measuring pan-cortical brain activ-
ity with a higher degree of combined spatial and temporal
resolution than is possible with functional MRI (fMRI) or scalp
EEG. Several MEG studies provide evidence for network
disruption after TBI generally (Tarapore et al. 2013) and mTBI
specifically (Castellanos et al. 2011; Dimitriadis et al. 2015;
Dunkley et al. 2015).

In this study, we quantified the local and global functional
connectivity specific to multiple frequency bands in patients
with mTBI and age-matched control subjects. We used a
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data-driven approach to identify robust network changes at the
source dipole level. We aimed to describe the topology of the
network disruption at the source level after mTBI and whether
the affected areas would include parts of the default mode
network (DMN). Finally, graph theory measures were applied
to provide a descriptive measure of alterations in network
topology.

METHODS

Subject population. Data were collected retrospectively with the
following inclusion criteria: a documented history of head injury,
Glasgow coma scale of 14 or 15 at presentation, age between 14 and

75 yr, and persistent postconcussion symptoms. Exclusion criteria
included history of neurological or psychiatric illness, including
substance abuse, and contraindications to MRI, including implanted
devices, such as pacemakers, as well as pregnancy. Nine subjects (4
women, 5 men) were recruited in the mTBI group with a mean age of
33.1 � 5.2 yr (SE). Only one subject had a blast-related injury (Table
1). Scans were performed at the University of Pittsburgh Medical
Center at a median of 8 mo after injury (range 3–96 mo). Healthy
control subjects consisted of 15 subjects with a mean age of 24.9
(range 22–36) yr. The two groups were not statistically different in
terms of age (P � 0.05). Informed consent was obtained prior to MEG
scans, in accordance with a protocol approved by the Institutional
Review Board of the University of Pittsburgh.

Data acquisition. Data analysis was performed with resting-state
data (Fig. 1). Resting, eyes-open recordings were obtained with an
Elekta-Neuromag VectorView 306-channel system with a sampling
rate of 1,000 Hz (0.03 Hz high-pass online filter, 330-Hz antialiasing
low-pass online filter). Recording time varied between 3 and 5 min for
each subject. A 2- to 5-min empty-room recording, with the same
acquisition parameters and with no subject present in the magnetically
shielded room, was obtained on the same day. Same-day empty-room
recordings were not available for the mTBI group, so the most
temporally proximal empty-room sessions were used for each patient.

Data preprocessing. All recordings were visually inspected for
time segments and channels that were obviously contaminated with
artifact, both of which were marked and excluded from further
analysis. The data were then notch filtered at 60 Hz and harmonics
with an ideal filter implemented in MATLAB. Signals were then
low-pass filtered at 240 Hz and high-pass filtered at 1 Hz with

Table 1. mTBI group subject characteristics

Subject Sex Age, yr Mechanism of Injury

T1 Female 30 MVA
T2 Male 15 Sports related
T3 Male 29 MVA
T4 Female 14 Sports related
T5 Male 52 Sports related
T6 Female 62 MVA
T7 Male 29 Blast and blunt
T8 Male 28 Blunt trauma
T9 Female 29 Fall

mTBI patient characteristics in terms of age, sex, and mechanism of injury.
MVA, motor vehicle accident.
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Fig. 1. Analysis stream for resting-state functional connectivity using 5,000 dipoles across the cortical surface. A: resting-state MEG data were collected with
a 306-Elekta machine. B: resting-state recordings were preprocessed to obtain 2 min of artifact-free neural time series at the sensor level. C: cortical activity was
estimated with minimum norm estimate inverse solution. D: the source dipoles were band-pass filtered into canonical frequency band, and a Hilbert transform
was applied to derive estimates of instantaneous phase. E: phase locking value (PLV) for each pairwise combination of source dipoles was calculated to construct
a connectivity matrix representing the PLVs between all the source dipoles (F). Each connectivity matrix was submitted to graph analysis to describe the
functional organization of the network (G).
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zero-phase finite impulse response (FIR) filters prior to downsampling
to 500 Hz. Heartbeat and eyeblink-related artifacts were isolated and
removed with an Infomax ICA-based procedure (Liu et al. 2010).
Structural MRI images were obtained for each subject with a 3-T
whole body scanner (Siemens). A T1-weighted brain volume was
used to generate a cortical surface model with the FreeSurfer software
package. The individual surfaces were used to coregister between the
MEG fiducial markers and the MRI structural images. Some aspects
of the data preprocessing and MEG source imaging were performed
with Brainstorm (Tadel et al. 2011). The resultant cortical surface
mesh was downsampled to 5,000 vertices in total.

Forward modeling of magnetic field activity was performed with
the overlapping-sphere method implemented in Brainstorm (Huang et
al. 1999) with a loose dipolar orientation constraint value of 0.4 for
the calculation of the weighted minimum norm estimate W:

W � AT�AAT � �C��1

Here A represents the gain matrix as calculated from the forward
solution and C is the spatial covariance of the noise of the recordings
(Baillet et al. 2001). Typically, in task-related scans, the noise cova-
riance can be estimated from the times the subject is not performing
the task. However, in the case of resting-state scans, such an estimate
would diminish the spontaneous covariance in the data. To this end,
the noise covariance matrix was constructed from each subject’s
respective empty-room recording (Ghuman et al. 2011). The subject
recordings were registered to a common template with the FreeSurfer
spherical registration method (Fischl et al. 1999). The MNI ICBM152
template was used as the surface template after downsampling the
high-resolution surface to roughly 5,000 triangle vertices. Anatomical
regions of interest (ROIs) were defined automatically with FreeSurfer
(Destrieux et al. 2010).

Functional connectivity analysis. Functional connectivity was es-
timated with phase locking value (PLV) (Lachaux et al. 1999).
Briefly, dipolar source activity was band-pass filtered with an FIR
filter as implemented in EEGLAB (Delorme and Makeig 2004) into
the canonical frequency bands of delta (1–4 Hz), theta (4–8 Hz),
alpha (8–12 Hz), and beta (12–30 Hz). For the beta band, five narrow
nonoverlapping bands from 12 to 28 Hz in 4-Hz steps were used. The
instantaneous phase was then estimated with the Hilbert transform.
The PLV for frequency band f between sources i and j was defined as

PLV�i, j� � � 1

N �
n�1

N

ei��i��j��
where N is the number of time points in the time series and �
represents the phase of the band-passed data at frequency band f for
sources i and j. The values for PLV are bounded between 0 (no phase
locking) and 1 (perfect phase locking across time). PLV was calcu-
lated for each subject with a 2-min artifact-free segment epoched into
4-s segments and averaged across segments (Stam et al. 2009). The
PLV matrices for the beta band were averaged across the five beta
bands. Thus each subject had four adjacency matrices (1 per fre-
quency band) of 5,000 � 5,000 nodes representing connectivity
between all dipoles.

Graph theory analysis. Graph analysis is a type of complex
network analysis that helps describe network topologies in terms of
features that can be related to neural function and organization
(Rubinov and Sporns 2010). Network features can be grouped into
two large groups, features describing functional segregation and
global integration. Functional segregation quantifies the presence of

local groups showing specialized functions relative to the rest of the
network, while global integration describes the efficiency with which
the network integrates the information flow from all of these func-
tionally segregated clusters across the network.

For graph analysis, we used the PLV matrices as undirected
weighted adjacency matrix (Bullmore and Sporns 2009) where the
weight of the connection between two nodes in the network is defined
as the PLV between those nodes. The inverse of the PLV represented
the length of the path needed to travel between nodes where more
strongly connected nodes would have shorter path lengths.

We calculated two graph theory metrics: the clustering coefficient
(Cw) (van Dellen et al. 2012) and global efficiency (Rubinov and
Sporns 2010). Cw describes the functional segregation of local clusters
by measuring the likelihood that nodes connected to a given node are
also connected to each other. Global and local efficiency are measures
of global integration. The global efficiency represents the average of
the efficiency of communication between all pair combinations across
a network. Mathematically, it represents the average inverse shortest
path length (Latora and Marchiori 2001). Local efficiency describes
how efficient the communication between the neighbors of a node
becomes if that node is removed. Neither metric was normalized to
surrogate random networks. While this correction is needed for
smaller networks (�100 nodes), the size of the network used in this
analysis (5,000 nodes) is well above the limit of 200 nodes at which
graph metrics are less susceptible to variations in network size and
density (van Wijk et al. 2010).

Statistical analysis. The global PLV differences between the two
groups were calculated by averaging the PLVs for the entire adja-
cency matrix for each subject. Differences in the medians of two
groups were assessed with the nonparametric Wilcoxon signed-rank
test. The statistical significance of PLV differences between the two
groups at the source dipole level was examined with nonparametric
cluster-based permutation testing (Maris and Oostenveld 2007). This
method is insensitive to outlier effects considering the small number
of subjects. All subjects were pooled, and in each permutation sub-
jects were randomly assigned to one of the two groups. A t-test was
then performed between the two groups. The resulting t-statistic
image was threshholded at voxel P value of 0.01 corresponding to a
t-statistic of 2.326. The significant t-statistic voxels were then clus-
tered based on the x, y, and z locations of the source dipole. We
performed 200 random permutations and then generated a null distri-
bution of cluster t-statistics sums. Clusters in the actual data were
assigned a P value based on the percentile of the permuted distribution
to which they correspond. To correct for multiple comparisons for the
multiple frequency bands, only clusters with a P value � 0.0125 were
considered significant (Bonferroni correction for 4 frequency bands).

Comparisons of the different graph analysis metrics were per-
formed with the nonparametric Wilcoxon signed-rank test between
the median values of the dipoles falling in a ROI. All statistical
calculations were performed with MATLAB.

RESULTS

Phase synchrony. The global mean PLVs were similar but
showed a trend toward a decrease in the mTBI group for the
delta (z value �1.37, P value 0.17), theta (z value �0.05, P
value 0.95), alpha (z value �1.35, P value 0.15), and beta (z
value �1.311, P value 0.189) frequency bands. For every
group average connectivity matrix, the PLVs above the 90th

Fig. 2. Group average connectivity across groups. Phase locking values were averaged across subjects and across ROIs. Only the values above the 90th quantile
of the averaged data are displayed for simplicity. Each line represents a connection between the 2 ROIs with the color signifying the strength of the connection
in terms of PLV. A, C, and E represent the group-average PLV for the control group in the delta, alpha, and beta frequencies, respectively. B, D, and F represent
the group-average PLV for the control group in the delta, alpha, and beta frequencies, respectively. Labels represent the anatomically parcellated regions based
on FreeSurfer autosegmentation. Brain regions are grouped anatomically by lobe, as indicated by color coding.
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quantile were retained and are displayed in Fig. 2. To identify
the regions contributing to the reduction in phase locking we
used permutation testing to identify spatial clustering, based on
the x, y, and z locations of the source dipoles. Regions of
spatially connected dipoles forming clusters of nodes with
similarly patterned connections were identified in all frequency
bands on the t-statistic map of difference in PLV values
between the mTBI and control groups (cluster P value of 0.05).
To control for the number of frequency bands studied, we
rejected any clusters above a corrected P value of 0.0125
(Bonferroni correction). The theta frequency did not have any
clusters below the corrected P value of 0.0125. Multiple
clusters were found in the delta, alpha, and beta bands with a
P value � 0.0125.

PLV was reduced in mTBI most frequently for clusters in
the delta frequency band. The connections showing this reduc-
tion in delta phase locking involved both intralobar and inter-
lobar connections. Although interhemispheric connections
showed reduced connectivity predominantly in the delta band,
alpha and beta frequency phase locking were also reduced.
Anatomically, the largest number of connections showing a
reduction in phase locking were found within the parietal
and occipital lobes in each frequency band. Reduced beta
phase locking in the mTBI group was most prominent in the
temporal lobe. Of note, these PLV reductions in the mTBI

group occurred in major hubs of the DMN, including the
posterior cingulate cortex (PCC), inferior parietal lobule,
and precuneus gyrus. The network topology for delta, alpha,
and beta frequency bands is detailed in Fig. 3, A, B, and C,
respectively.

Graph theory. Global integration measures used to evaluate
the efficiency with which the network integrates information
flow from segregated clusters did not reveal a statistically
significant difference in medians between groups (P � 0.05,
Wilcoxon rank sum test). Functional segregation analysis to
quantify the presence of local groups, however, demonstrated
that local efficiency was reduced in the concussion group
compared with the control group in all frequency bands for the
regions detailed in Table 2 (P � 0.05 uncorrected). No statis-
tically significant clustering coefficient changes were found
between the two groups.

DISCUSSION

In this study we used PLV and graph theory in a data-driven
manner to investigate mTBI-related changes in whole brain
functional connectivity in patients showing persistent postcon-
cussive symptoms. To our knowledge, this is the first study to
demonstrate that MEG can detect mTBI network changes at the
source level. Our results show that the reduction in PLV
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Fig. 3. Connectivity plots representing mTBI-related reductions. A, B, and C represent the PLV reduction in the delta, alpha, and beta frequencies, respectively.
Each line represents a connection showing a statistically significant reduction in PLV in the mTBI group, compared with control subjects, between the labeled
regions. Labels represent the anatomically parcellated regions in which dipoles with statistically significant clusters (P � 0.0125) were located. Brain regions
are grouped anatomically by lobe, as indicated by color coding.

Table 2. Cortical regions with reduced regional efficiency subdivided by frequency band

� (1–4 Hz) � (4–8 Hz) 	 (8–12 Hz) 
 (13–30 Hz)

Regions showing reduced regional
efficiency

Superior parietal lobule Superior parietal lobule Superior parietal lobule Superior parietal lobule
Cuneus Cuneus
Inferior parietal Inferior parietal
Lateral occipital Lateral occipital
Supramarginal Precuneus

Cortical regions where source dipoles showed a reduction in local efficiency in the mTBI group compared with control subjects at an uncorrected level are
shown. Each column represents the frequency band at which functional connectivity was evaluated. The labels represent the anatomical regions parcellated with
FreeSurfer that had dipoles with reduced regional efficiency.
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following mTBI is not a global effect but involves a specific
network of cortical regions. The size and extent of this network
vary across the different frequencies of neuronal oscillations.
The network involved spanned the temporal, parietal, occipital,
and cingulate cortical regions. Of note, the inferior parietal and
precuneus cortical regions showed the largest number of con-
nectivity changes. Our findings also highlight the loss of both
regional intralobar connectivity and interhemispheric connec-
tivity.

Our findings are in line with current research describing a
network topology and band-specific changes in mTBI.
Changes in alpha band connectivity have been demonstrated
across TBI patients of varying severity (Tarapore et al. 2013).
Alpha slowing and shift of the alpha peak to a lower frequency
has been observed after mTBI (Dunkley et al. 2015), and a
classification tool based on alpha connectivity that identifies
mTBI with high predictive accuracy has been reported (Dimi-
triadis et al. 2015). For the delta frequency, previous work has
demonstrated the generation of slow waves following TBI that
are hypothesized to stem from white matter deafferentation
(Huang et al. 2014; Lewine et al. 1999), as suggested by animal
studies (Ball et al. 1977; Gloor et al. 1977). A postulated
mechanism for the loss of white matter integrity following
mTBI is diffuse axonal injury. One hypothesis for the emer-
gence of subsequent cognitive impairment is that deafferenta-
tion leads to the generation of areas with asynchronous delta
activity and functional disconnection. The overlap in network
topography between the alpha and delta networks suggests that
they might share a common causal mechanism. Supporting this
hypothesis, the extent of white matter damage observed with
tractography after mTBI was shown to correlate with the
degree of reduction in functional connectivity (Sharp et al.
2011).

In terms of the observed network topology, the structure of
the alpha band network showing reduction in mTBI matches
that of the dominant network described by Hillebrand and
colleagues in the healthy state for the alpha band (Hillebrand et
al. 2012). The network consisted of the visual cortex and the
parietal and temporal lobes in addition to the PCC. These
regions represent major hubs in the DMN (Raichle et al. 2001).
It has been proposed that while an individual is at rest the
DMN exhibits highly coordinated activity that is subse-
quently deactivated during task performance (Raichle et al.
2001). The core nodes of the DMN are thought to include
the PCC, the precuneus, and the medial prefrontal cortex.
Functionally, the DMN has been linked to internally driven
attention and the performance of automatic behavior (Mason
et al. 2007). Both the activity and functional connectivity
within the DMN were linked to performance in higher cogni-
tive functions such as memory and attention (Buckner et al.
2008; Hampson et al. 2006; Leech et al. 2011), deficits that are
the most common reported consequences of mTBI (van der
Naalt et al. 1999; Smith-Seemiller et al. 2003). fMRI-based
studies have documented DMN dysfunction after mTBI
(Mayer et al. 2011; Nathan et al. 2015; Palacios et al. 2013;
Sharp et al. 2011; Sours et al. 2013; Stevens et al. 2012; Zhou
et al. 2012) and in several disease states such as ADHD,
Alzheimer’s disease, and schizophrenia (Koch et al. 2012;
Uddin et al. 2008; Whitfield-Gabrieli et al. 2009).

Given the association between the DMN and cognitive
functions such as working memory and attention (Buckner et

al. 2008; Hampson et al. 2006; Leech et al. 2011), our findings
suggest that this disconnection in the DMN might play a role
in the cognitive deficits seen in postconcussion patients and
might be a potential prognostic factor. The loss of interhemi-
spheric connections may be explained by damage to fibers in
the corpus callosum, given that there is tractography evidence
for matter damage to these fibers after TBI (Fagerholm et al.
2015).

One major limitation of this study is the relatively small
number of subjects recruited and the relative heterogeneity in
this subject cohort with regard to age and time since injury.
Furthermore, the large number of observations between every
pair combination of dipole locations and frequency band would
require very large effect sizes to be considered significant to
account for the large number of multiple comparisons. We
sought to address all of these issues through permutation
testing with cluster-based correction for multiple comparisons
based on spatial clustering. If any of the observed group
differences are driven by only a handful of the subjects,
shuffling the subjects across the two groups would distribute
this effect into the surrogate distribution and thus control their
significance level. Such cluster-based correction is a validated
method to correct for multiple comparisons that is sensitive to
smaller effect sizes (Maris and Oostenveld 2007).

Graph theory analysis helps describe the functional charac-
teristics of multidimensional, complex connectivity matrices.
We applied graph theory analysis to localize the network nodes
affected by mTBI based on changes in their functional char-
acteristics. The results are in line with the phase locking
connectivity changes observed, where global efficiency is rel-
atively preserved but specific hubs become partially discon-
nected. Dimitriadis and colleagues reached similar conclu-
sions, where they found no differences in global efficiency
compared with healthy subjects and a reduction in local effi-
ciency across all frequency bands (except the theta band at an
uncorrected P-value level) (Dimitriadis et al. 2015). These
results suggest that while the whole brain network has a similar
degree of efficiency in connections in the mTBI group com-
pared with healthy control subjects, the pathological changes
are more localized to certain critical regions. We cannot rule
out that the data also could reflect statistical power limitations
in detecting subtle changes in the number of subjects in our
cohort. Alternatively, the data may reflect plasticity changes
that compensate for the reduced efficiency in parts of the
network. It is also important to note that changes in global
efficiency might become more evident during nonresting be-
havior, when the affected nodes are engaged in active cognitive
tasks.

Despite the short duration of the recordings used compared
with other studies (Dimitriadis et al. 2015), we observed robust
connectivity relationships, similar to previous descriptions of a
stable network topology being achieved from smaller time
segments (Chu et al. 2012; van Dellen et al. 2014). Even
shorter time segments (�60 s) have been reported to be
adequate for capturing group connectivity differences in Alz-
heimer’s disease (Stam et al. 2009) and Parkinson’s disease
(Olde Dubbelink et al. 2014). Our data suggest that one
strength of a MEG-based evaluation of subjects with mTBI is
that a short duration (2–4 min) of resting-state recordings can
provide useful information regarding the status of functional
connectivity.
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Limitations. While the results show a robust change in the
major hubs of the DMN, we are not able to link these findings
to any specific cognitive changes within this cohort of subjects,
as neuropsychological testing scores were not available for all
subjects. While resting-state analysis was used because of the
ease of administration in mTBI subjects, inferring the func-
tional outcome of these changes requires functional imaging
studies during task conditions that engage these areas of
interest and correlating the task performance with the func-
tional changes observed (Kida et al. 2016). We hope to address
this issue in further studies.

Of note, PLV is sensitive to false positives due to zero-phase
lag that can be introduces by field spread caused by imperfec-
tions in the inverse solution. Multiple methods have been
developed to circumvent this issue, from using phase syn-
chrony measures less sensitive to zero-phase lag like the phase
lag index (Stam et al. 2007) to using regression models prior to
calculating connectivity (Brookes et al. 2012) or simply sub-
tracting a randomly generated phase locking matrix by project-
ing noise using the same inverse solution (Ghuman et al. 2011).
As discussed in Ghuman et al. (2011), this issue is addressed
by the fact that the results shown are t-statistic differences; thus
any signal spread introduced through the inverse solution
would be in all the subjects and should not be seen in the
contrast between groups.

Conclusions. MEG can be used to detect and quantify
widespread network disruption resulting from mTBI, even
months after the initial insult. These data suggest that regions
involved in the DMN may contribute to the persistence of
cognitive symptoms experienced by many patients after mTBI.
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