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Abnormalities in the First-Episode Schizophrenia
Spectrum
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ABSTRACT

BACKGROUND: Little is known about neural oscillatory dynamics in first-episode psychosis. Pathophysiology of
functional connectivity can be measured through network activity of alpha oscillations, reflecting long-range
communication between distal brain regions.

METHODS: Resting magnetoencephalographic activity was collected from 31 individuals with first-episode
schizophrenia spectrum psychosis and 22 healthy control individuals. Activity was projected to the realistic
cortical surface, based on structural magnetic resonance imaging. The first principal component of activity in 40
Brodmann areas per hemisphere was Hilbert transformed within the alpha range. Non-negative matrix factorization
was applied to single-trial alpha phase-locking values from all subjects to determine alpha networks. Within
networks, energy and entropy were compared.

RESULTS: Four cortical alpha networks were pathological in individuals with first-episode schizophrenia spectrum
psychosis. The networks involved the bilateral anterior and posterior cingulate; left auditory, medial temporal, and
cingulate cortex; right inferior frontal gyrus and widespread areas; and right posterior parietal cortex
and widespread areas. Energy and entropy were associated with the Positive and Negative Syndrome Scale total
and thought disorder factors for the first three networks. In addition, the left posterior temporal network was
associated with positive and negative factors, and the right inferior frontal network was associated with the
positive factor.

CONCLUSIONS: Machine learning network analysis of resting alpha-band neural activity identified several aberrant
networks in individuals with first-episode schizophrenia spectrum psychosis, including the left temporal, right inferior
frontal, right posterior parietal, and bilateral cingulate cortices. Abnormal long-range alpha communication is evident
at the first presentation for psychosis and may provide clues about mechanisms of dysconnectivity in psychosis and
novel targets for noninvasive brain stimulation.
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Schizophrenia involves dysconnection between neural re-
gions (4-6). Functional connectivity is reduced in schizo-

Schizophrenia is associated with disabling symptoms,
including visual and auditory hallucinations, blunted emotion,

and deficiencies in attention, decision making, and working
memory. The disorder is often chronic and typically emerges
during late adolescence and young adulthood. The exact pa-
thology remains unknown, and its explication is complicated by
the progressive course of the disorder (1-3) and the cumulative
effects of secondary illness-related factors. These confounds
are ameliorated by studying individuals near the emergence of
psychosis within the schizophrenia spectrum. Definitive di-
agnoses cannot always be made at the first episode. Hence, the
schizophrenia spectrum at first episode includes schizophrenia,
schizoaffective disorder, schizophreniform disorder, delusional
disorder, and psychosis not otherwise specified.

phrenia (7-11), and this reduction may have an anatomical
component (12-14). For example, schizophrenia is associated
with reduced structural connectivity in several polymodal hubs
and so-called rich clubs, centralized hubs at the top of the
cortical processing hierarchy (15). This dysconnection is also
evident in functional activity. Electroencephalography (EEG)
and magnetoencephalography (MEG) reflect summed dendritic
fields and provide a high-resolution window into real-time
neural network activity. MEG allows greater spatial resolution
of the cortical sources of neural oscillations because magnetic
fields, unlike electric fields, are unaffected by intervening tissue
boundaries. In combination with accurate sulcal-gyral models
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of individual head shape based on structural magnetic reso-
nance imaging (MRI), MEG activity can be source resolved
to the cortical surface with reasonable spatial resolution of 5 to
10 mm.

Neural oscillations have a known role in coordinating activity
in both local brain networks (16) and networks connecting
brain regions over long distances (17). Changes in overall
oscillatory activity are observed in schizophrenia (18). Distrib-
uted oscillatory networks are characterized through spectral
frequency phase relationships between cortical regions. The
alpha rhythm, thought to reflect in part information transfer
between distal brain regions (19,20), is reduced in schizo-
phrenia (11,21).

Alpha power was traditionally associated with vigilance and
sustained attention, representing an underlying idle state of the
brain. For example, alpha increases when the eyes are closed
and diminishes when the eyes are open (22,23). However,
alpha has a role in working memory (24-26) and top-down
control (27-30). Alpha phase affects the synchrony of
neuronal activity both locally and between regions of the brain
(81). In addition, alpha activity acts to suppress task-irrelevant
processing (31), activate task-relevant processing (29), or both
(29,32). Thus, in addition to reflecting the general idling of
cortical areas, alpha likely plays a role in long-range commu-
nication between distal cortical areas.

In that regard, long-distance synchrony in gamma activity
between distal cortical areas likely involves alpha oscillations
that coordinate between areas (33-36). Importantly, attention
effects are associated not only with the alpha-gamma power
anticorrelation but also with cross-frequency coupling. Gamma
band bursts entrain to alpha phase, such that sensory gamma
bursts become locally organized via prefrontal cortex (PFC)-
controlled alpha modulations (37). Thus, alpha plays a role in
modifying sensory processing via input from executive and
other distributed areas. Therefore, we selectively targeted
alpha oscillations for analysis of distributed networks because
alpha is a biologically viable, empirically demonstrated coor-
dinating frequency between distal cortical areas.

We used alpha phase locking (38) as an indicator of func-
tional connectivity between regions during the resting state.
We assume that there are multiple overlapping networks within
the brain that contribute to the observed signal. Thus, we
employed a machine learning clustering technique, non-
negative matrix factorization (NMF), to subdivide phase syn-
chrony graphs into functional networks. NMF, traditionally
used in applications such as image recognition (39), genetics
(40), and natural language detection (41), has previously been
used to investigate neural differences between subject groups
using functional MRI (42). We determined the energy and en-
tropy of these networks to provide network-specific informa-
tion on alpha irregularity in schizophrenia. Energy measures
the overall quantity of information transfer in a system and is
akin to the power of the signal that is being communicated.
Entropy represents the order/disorder of communication and
information transfer within each network and measures the
degree of complexity in the neural signal. We specifically
aimed to determine networks of interest by relatively light,
data-driven computational methods to identify promising
network features for future in-depth studies of pathology in
early-course psychosis and for potential development of

Alpha Network Deficits in First-Episode Schizophrenia

optimal patient-specific precision medicine treatments target-
ing specific circuits.

METHODS AND MATERIALS

Participants were 31 subjects with first-episode schizophrenia
(FES2z) and 22 healthy control (HC) subjects, group matched for
age, sex, and estimated premorbid Q. Subjects with FESz and
HC subjects differed on socioeconomic status and Measure-
ment and Treatment Research to Improve Cognition in
Schizophrenia overall scores, consistent with the deleterious
effects of psychosis on functioning and cognition. Parental
socioeconomic status was significantly lower in subjects with
FESz. (Note that none of the energy or entropy measures re-
ported below correlated with parental socioeconomic status in
either group.) Seven subjects with FESz were unmedicated.
See Table 1 for demographic and clinical data. This study was
approved by the University of Pittsburgh Institutional Review
Board. All subjects provided informed consent and were paid
for participation.

Five minutes of eyes-open resting MEG data were collected
in a magnetically shielded room. We acquired resting-state
data with eyes open because we were interested in entropy
measures of network-level activity, and spectral entropy is
greatest in eyes-open EEG (43). Both EEG and MEG were
recorded, but only the resting MEG is reported here. MEG data

Table 1. Subject Demographic and Clinical Data

FESz HC P
n (Male/Female) 31 (20/11) 22 (13/9) .69
Age, Years 21.7 (5.0) 21.7 3.7) .96
SES 26.9 (13.2) 33.4 (12.5) .057
Parental SES 39.6 (14.0) 53.3 (7.6) <.0017
WASI 1Q 104.9 (15.2) 106.4 (8.6) .69
MATRICS 35.0 (16.6) 49.1 (6.4) <.001%
GAS 38.1 (9.2)
SAPS 6 (3.3)
SANS 10.3 3.1)
PANSS Total 76.5 (15.0)
PANSS Pos 19.4 5.7)
PANSS Neg 17.3 (4.8)
PANSS TD 11.2 3.2
Medication” 205.5 (160.1)
DUP, Weeks 36

Subject n and sex distributions are number of individuals. Duration
of untreated psychosis (DUP) is median value. All other values are
mean (SD).

FESz, subjects with first-episode schizophrenia spectrum; GAS,
Global Assessment Scale; HC, healthy control subjects; MATRICS,
Measurement and Treatment Research to Improve Cognition in
Schizophrenia Consensus Cognitive Battery composite score; Neg,
negative factor score; PANSS, Positive and Negative Syndrome
Scale; Pos, positive factor score; TD, thought disorder factor score;
Total, total score; SANS, Scale for the Assessment of Negative
Symptoms global score; SAPS, Scale for the Assessment of Positive
Symptoms global score; SES, socioeconomic status; WASI 1Q,
Wechsler Abbreviated Scale of Intelligence score.

2Significant effect.

PMedication in chlorpromazine equivalents [oral dosages from
Andreasen et al. (74); depot dosages from Gardner et al. (75)].
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Figure 1. Processing pipeline. (A-C) Magneto-
encephalography data (A) were spatially down-
sampled into Brodmann areas using principal
component analysis (PCA) (B), bandpass filtered
into the alpha band, and transformed into the
analytic signal using the Hilbert transform (C). (D)
Analytic signal phases were compared using single-
trial phase-locking values (S-PLV) to generate
functional connectivity graphs in a windowed
manner for each subject. (E) Non-negative matrix
factorization (NMF) was used iteratively to deter-
mine networks. (F) The optimal number of networks
was determined using error analysis. (G, H) Finally,
energy and entropy measurements associated with
each network for every subject were determined (G)
and compared between healthy control and first-
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were recorded using a 306-channel whole-head MEG system
(Elekta Neuromag; Elekta Instrument, Helsinki, Finland) with a
sampling rate of 1000 Hz (online bandpass filter = 0.1-330 Hz).
Bipolar leads were placed above and below the left eye and
lateral to the outer canthi of both eyes. Bipolar electrocardio-
gram leads were placed just below the left and right clavicle.
Four head position indicator coils were placed between elec-
trodes on the surface of the EEG cap, and locations (relative to
the nasion and preauricular points) were recorded using a
three-dimensional digitizer (ISOTRAK; Polhemus, Colchester,
VT). Head position was tracked continuously throughout the
experiment. Subjects were instructed to fixate on a central
cross for the duration of the test.

Structural MRI was obtained for use in MEG source
modeling. Sagittal T1-weighted anatomical MR images were
obtained using a Siemens (Munich, Germany) TIM Trio 3T MRI
system with a multiecho three-dimensional magnetization
prepared rapid acquisition gradient-echo sequence (repetition
time = 2530 ms; echo times = 1.74, 3.6, 5.46, 7.32 ms;

inversion time = 1260 ms; flip angle = 7°; field of view = 220 X
220 mm; isotropic voxel size = 1 mm; 176 slices; generalized
autocalibrating partially parallel acquisition acceleration fac-
tor = 2).

Head movement correction was completed using Elekta
MaxMove, and external noise was reduced via the temporal
extension of signal space separation (44) implemented in
Elekta MaxFilter. Eyeblink and heartbeat artifacts were
removed using adaptive mixture independent component
analysis (45,46) implemented in EEGLab (https://sccn.ucsd.
edu/eeglab/index.php). The MEG sensor locations were
registered to structural images using MRILab (Elekta Neuro-
mag Oy, Helsinki, Finland). The locations of sources were
constrained to the gray/white matter boundary segmented
from the structural MRI data using FreeSurfer (http://www.
surfer.nmr.mgh.harvard.edu). This boundary was tessellated
into an icosohedron with 5-mm spacing between vertices,
resulting in ~5000 current locations per hemisphere. A for-
ward solution for vertices was modeled as a single sphere.
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Source activity was then estimated from 204 planar gradiom-
eters using minimum norm estimation (47). The noise covari-
ance matrix and forward solution were used to create a linear
inverse operator using a loose orientation constraint of 0.4 (48)
with depth weighting applied. Sensor covariance was esti-
mated from MEG data collected without a subject in the
magnetically shielded room on the same day as resting-state
acquisition. Data from individual subjects were then morphed
into a standard space prior to functional connectivity analysis
with 5-mm smoothing.

For data reduction, following MEG cortical surface source
projection, the cortical surface was parcellated into 80 Brod-
mann areas (BAs) (see processing pipeline in Figure 1). The first
principal component across the spatial dimension of the sig-
nals from each area was used to represent regional cortical
activity. These 80 component signals were bandpass filtered
into the alpha band (8-12 Hz) using a 20th-order Butterworth
bandpass filter applied bidirectionally to achieve zero-phase
filtering. Nominal break frequencies were chosen so that after
the zero-phase filtering, the true break frequencies would be at
8 and 12 Hz. Synchrony was estimated between phases of
alpha for each pair of BAs using single-trial phase-locking
values (S-PLVs) (38). The calculation of S-PLV results in lower
temporal resolution when compared with multitrial PLV but is
appropriate for estimating phase locking between resting-state
signals that lack event-initiated epochs. S-PLV is defined as

1 [t
S—PLV(t) = |5 / 61062 g
3

where 3 is the width of the window, typically chosen between
6 and 10 times the length of the midband period (38).
Nonoverlapping windows of 600 ms were chosen, corre-
sponding to 3=6 times the mid-alpha-band period of 100 ms.
The instantaneous phase ¢ of component signals was taken to
be the phase of the analytic signal obtained using the Hilbert
transform (49). These S-PLVs were then used to create a
weighted, undirected connectivity graph C for each time win-
dow (50). The nodes of C correspond to BAs, and the edges
represent the S-PLVs, taken to be the functional connectivity,
between pairs of BAs. In total, T connectivity graph matrices C
of size b X b are generated for each S subjects, where T, S,
and b are the numbers of time windows per subject, subjects,
and BAs, respectively.

To extract information from these connectivity graphs, the
NMF technique was used. NMF is an unsupervised machine
learning algorithm that can be used to decompose an input
matrix A into two components: a matrix W of bases, or sub-
graphs, and a matrix H of their corresponding contributions to
the input matrix A (39). Connectivity graphs were combined to
serve as the input matrix (A) for NMF that yielded subgraphs
(W), taken to be functional resting-state alpha networks, and
associated time series of contributions (H), taken to be the
relative temporal activation of each of these networks.
Because the synchrony graphs are undirected, all functional
relationships were described in a single input matrix A by
unwrapping and concatenating the lower triangular of each
S-PLV connectivity graph C, resulting in matrix A having

Alpha Network Deficits in First-Episode Schizophrenia

dimensions b X (b — 1)/2 X N, where N is the number of time
windows over all subjects, S multiplied by T.

Factorization was completed using the sparse, alternating
non-negativity constrained least squares approach (51) that is
given by the following minimization:

: 1 2 2 N 2
mins {14 — WHIZ + w2 + 83 IHC. O} st W, H=0,

where || X|| is the Frobenius norm given by /> 7" |X,-_,|2,

[l+]l+ is the 24— norm given by >7,|X;|, and H(;, ¢) is the cth
column of H. Parameters B and n act to regulate the values in
the subgraphs W and activations H, ensuring sparsity of the
result while bounding the size of output values. The choice of §
as 0.01 and n as the square of the maximum value in A was
used because these have been shown to be robust values for
these parameters (42,52). The sizes of Wand Hare [b X (b —
1)/2 X k] and (k X N), respectively, where k is the number of
functional networks, which was chosen by performing NMF
iteratively for increasing values of k and selecting the inflection
point, or elbow, in the reconstruction residual sum of squares
error curve (51) (Figure 2A). This is the point after which
increasing the number of functional networks yields diminish-
ing returns on model fit. Computationally, this was taken to be
the point of first large change in curvature (Figure 2B) or, more
specifically, the point at which the smallest ratio of the cur-
vature to previous curvatures was maximized (Figure 2C). This
method was intended to provide a repeatable and conservative
way to prevent overfitting of the model.

The NMF algorithm was initialized using non-negative
double singular value decomposition, which allows for
improved factorization speed and provides stable outputs
(53). Non-negative double singular value decomposition is
best implemented on sparse inputs, and rather than apply an
arbitrary threshold, sparsity of connectivity graphs C was
obtained using a threshold from surrogate data analysis. The
threshold was taken to be the 95th percentile of the maximum
S-PLV generated from 500 pairs of independent white-noise
surrogate signals. Previous studies including measures of
synchrony have used white-noise surrogates to determine
thresholds and have shown this method to be equivalent to
other, more computationally heavy methods such as trial-
shifted and phase-shuffled surrogates (54,55). Connectivity
above what is seen in the surrogate data is likely to be real,
not just the result of noise or random chance. Thus, this
method identifies a reasonable threshold value above which
connectivity is unlikely to reflect the result of random error or
noise.

The energy and entropy of the activations associated with
each functional network were calculated for individual subjects
(42). The energy of a given network, which represents overall
activation, was calculated as

N

Energy = > w?
=

where N is the length of the activation vector w. The func-
tional network entropy, which quantifies the dynamics of
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Figure 2. Method for determining number of functional networks. (A) The optimal number of functional networks occurs at the inflection point of the
reconstruction residual sum of squares (RSS) error curve generated from iterative runs of non-negative matrix factorization (NMF) with increasing numbers of
functional networks. (B, C) This point can be determined as the first point with a large change in curvature (B) or, most apparently, as the point at which the
minimum ratio of curvature to the curvature at previous points is greatest (C). These points are represented by red diamonds that correspond to 17 functional

networks.

activation, was then calculated using the histogram-based
method (56) as

N
Entropy = Z —P(x;) log P(x;)
p

where P(x) is the probability function derived from the histo-
gram. Because the measures were not normally distributed
(maximum kurtosis > 30 for each measure), the energy and
entropy of functional network activations were compared
between subjects with FESz and HC subjects using the Wil-
coxon rank-sum test. Because this is the first examination of
alpha functional networks derived in this fashion, we adopted
more liberal initial exploratory analyses, where p < .05 was
considered meaningful; however, these data were also cor-
rected for multiple comparisons with the Benjamini-Hochberg
procedure with a false discovery rate of .15. To demonstrate
the utility of factorization in the analysis, these energy and
entropy calculations and comparisons were also performed
on the data after filtering into the alpha band (i.e., prior to
phase synchrony estimates). A correlation between whole-
brain signal power (sum of the magnitude of the Fourier
transform across regions) was also performed. These whole-
brain analyses were similarly not normally distributed, so
comparisons between subject groups were also made using
the Wilcoxon rank-sum test.

Correlations between network activation measures and
symptoms were investigated with Spearman’s rank order
correlations. Owing to the large number of possible correla-
tions between energy and entropy for separate functional
networks and individual symptoms, clinical measures were
reduced to total, positive, negative, and thought disorder fac-
tors of the Positive and Negative Syndrome Scale. (Significant
associations with items are presented in the Supplement, but
caution must be used in interpretation.)

RESULTS

No significant difference between subject groups was
observed in whole-brain alpha energy (p = .203), entropy (p =
.401), or power (p = .267). Using NMF, 17 functional networks
(Supplemental Figure S1) were determined. Comparisons be-
tween groups revealed four functional networks that exhibited
significantly lower median energy in subjects with FESz, one of
which survived correction for multiple comparisons (Figure 3).
These were network 6, which consists primarily of distributed
alpha coherence in the cingulate cortex; network 12,
which connected the left hemisphere auditory cortex with
the left medial temporal lobe and posterior cingulate; network
13, which consists of a hub in the right inferior frontal
cortex Broca’s homologue (BAs 44 and 45) hub with wide-
spread connectivity (bilateral cingulate, bilateral lateral and
medial temporal lobes, right hemisphere PFC, and bilateral
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Figure 3. The four networks that differentiated healthy individuals from individuals with first-episode schizophrenia spectrum (FESz). Networks are rep-
resented as a connectivity graph and anatomically on a brain model: (A) network 6; (B) network 12; (C) network 13; (D) network 14. Healthy control and FESz
group comparisons of energy and entropy are also provided. In the connectivity graph, each pixel represents a phase-locking relationship between two
Brodmann areas. Values closer to the diagonal represent local communication, while values in the lower left represent cross-hemisphere communication. To
further improve an anatomical understanding, dashed lines divide Brodmann areas from different lobes and are identified at the axes by their hemisphere (R,
right; L, left) and lobe (F, frontal; P, parietal; T, temporal; O, occipital). The top third of connections by strength are also shown within the brain at sagittal, axial,
and coronal views. FieldTrip software (73) was used in generation of these brain visuals. Energy and entropy values have been normalized between highest and
lowest observed values across subjects, and the p value associated with the Wilcoxon rank-sum test is given. Comparisons with p < .05 are in bolded red text.

NMF, non-negative matrix factorization.

sensorimotor cortex); and network 14, a network between the
posterior cingulate cortex and bilateral superior parietal lob-
ules. Of these four networks, the cingulate network, right
inferior frontal network, and posterior cingulate superior pari-
etal network also showed significant decreases in median
activation entropy in subjects with FESz. Changes in both
entropy and energy of the posterior cingulate superior parietal
network survived correction for multiple comparisons.

Within HC subjects, energy and entropy measures across
networks were highly correlated (ps = .48-.99, all ps < .05). In
subjects with FESz, energy and entropy were correlated
among most networks, although network 6 (bilateral cingulate)
and network 14 (posterior cingulate and bilateral superior pa-
rietal cortex) were uncorrelated. In subjects with FESz, there
were widespread correlations between both energy and en-
tropy measures and clinical symptoms for all networks except
network 14 (posterior cingulate and bilateral superior parietal

cortex) (see Table 2 and Supplemental Table S2). Lower energy
and entropy in network 6 (bilateral cingulate) were associated
with more total symptoms and greater thought disorder. Lower
energy and entropy in network 12 (left posterior temporal) was
associated with more total, positive, and negative symptoms
and with greater thought disorder. Lower energy and entropy in
network 13 (right inferior frontal) were associated with more
total and positive symptoms and with greater thought disorder.

DISCUSSION

Using a data-driven approach to source-level functional con-
nectivity analysis in alpha-band MEG data, we identified 17
discrete distributed functional networks based on phase
locking (Supplemental Figure S1). From the analytical side, the
observation that NMF extracts reasonable brain networks from
connectivity graphs is an important methodological advance.
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Table 2. Spearman’s Correlations of Energy and Entropy With Clinical Measures

Bilateral Left Posterior Right Inferior
Cingulate Temporal Frontal Posterior Cingulate Parietal
(Network 6) (Network 12) (Network 13) (Network 14)
NRG ENT NRG ENT NRG ENT NRG ENT

Between-Group Differences
z Score 2.03 2.10 2.36 2.37 2.35 2.37 2.68 2.82
p Value .04% .04% .03 .06 .027 .027 .01° .005°
Correlations With Symptoms
PANSS total score

Spearman’s p —.40 —.40 —.60 —.61 -.38 —.43 -.10 —-.08

p Value .04° .04° .001° .001° .06 .03° 61 .69
PANSS positive factor score

Spearman’s p -.35 —-.30 —.46 —.45 —.42 —.42 -.18 -.19

p Value .08 14 .02° .02° .03° .03° .38 .35
PANSS negative factor score

Spearman’s p -.22 -.23 —.54 —.56 -.15 —.22 -.15 -.13

p Value 29 25 .005° .003° 46 29 48 52
PANSS thought disorder factor score

Spearman’s p —.46 —.40 —.54 —.50 —.61 —.66 -.25 —.24

p Value .02° .04° .004° .009° .001° <.001? 21 .23

PANSS item scores follow factor scores.

ENT, entropy; NRG, energy; PANSS, Positive and Negative Syndrome Scale.

4Significant p value (p =< .05).

Psignificant correlation (p < .05) surviving correction for multiple comparisons (false discovery rate = .15).

From the clinical neuroscience side, that several of these data-
driven alpha networks were abnormal in subjects with FESz is
an important new lead in understanding the pathophysiology
of the disorder.

Four distributed networks (Figure 3) displayed lower energy
in subjects with FESz, indicating less coherent alpha activa-
tion. The entropy decreases in three of these networks (net-
works 6, 13, and 14), suggesting that the networks also are
less variable (more stagnant) in their alpha-band activity. Even
very early in the disease process, close to the emergence of
psychosis in the schizophrenia spectrum, distinct distributed
cortical networks are impaired and can be detected through
aberrant alpha-band network dynamics. These abnormalities
were isolated through S-PLVs and NMF and could not be
determined using simple whole-brain analyses of alpha power
or activity. Thus, NMF holds powerful potential for use on
neural data through unbiased identification and isolation of
functional networks.

Three of the four abnormal alpha networks were associated
with symptoms. From white matter-based connectome ana-
lyses, the bilateral cingulate network (network 6) comprises the
multimodal cortex and cortical hubs (57) and is one of the rich
club areas of the brain (15). Thus, it is perhaps not surprising
that resting pathophysiology in this network was associated
with overall symptom severity, particularly with thought disor-
der (Table 2). The left posterior medial and lateral temporal
cortex network (network 12) likewise was associated with
thought disorder and with overall, positive, and negative
symptom severity. The associations of the left posterior tem-
poral cortex and positive symptoms and thinking disturbance
in schizophrenia are well documented (58-60), as is the as-
sociation of medial temporal pathology with paranoia and

other psychosis-like symptoms (61,62). The right inferior gyrus
hub network (network 13) comprises the right hemisphere
analog of Broca’s area in the ventrolateral PFC and is thought
functionally to serve two main roles: stopping motor responses
and inhibiting orienting to distracting stimuli (63,64). Adjacent
right BA 47 may be involved in response-reward processing,
including delayed reward versus reward magnitude trade-offs
and risky choices (65,66). Schizophrenia is associated with
increased distractibility and perseveration, likely reflecting
some involvement of the right ventrolateral PFC; for example,
functional MRI studies in schizophrenia show reduced right
inferior frontal gyrus activity on a stop-signal task (67) and
reduced coupling of dorsolateral PFC working memory areas
and right inferior frontal gyrus (among other PFC areas) when
distractors were presented (68). Finally, the bilateral posterior
cingulate and superior parietal network (network 14) was
associated fairly exclusively with emotional withdrawal.
Although both the posterior cingulate and parietal cortex serve
as cortical hubs (56) and rich club areas (15), the right parietal
lobe is also associated with social behavior and spatial
attention. Thus, these networks defined solely on the basis of
source-resolved alpha phase locking appear to reflect
reasonable physiological networks derived via white matter-
based connectomics that are known to be compromised
functionally and structurally in schizophrenia. It is reasonable
to suggest that dysfunction of alpha communication between
distal brain areas may play a role in some of the more complex
behavioral symptoms in schizophrenia such as thought dis-
order. Understanding the network architecture of a biologically
validated information carrier frequency (alpha) is an important
first step in isolating the systems-level pathophysiology in
psychosis.
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The analysis in this study is limited by spatially down-
sampling into BAs to reduce dimensionality. This regional
simplification of the brain could explain why alpha activity
could be substantially represented with 17 functional net-
works. The development of improved processing techniques,
especially those that would decrease the computation load of
S-PLVs and NMF in higher-dimension datasets, would allow
for analysis of the brain with less spatial downsampling. This
would remove any biases that may be present due to the
Brodmann atlas and could potentially facilitate in better local-
ization of neural differences between the subject groups.
Methods to perform spectral connectivity across all nodes
have been developed (69) and do not suffer from potential is-
sues associated with spatial downsampling. However, accu-
rate functional parcellation of the cortex is needed to translate
these purely spatial networks into physiological systems.
Currently, we are developing methods to parse the brain based
on the Human Connectome Project multimodal functional
parcellation (70). This would be a significant improvement over
anatomic sulcal-gyral schemes (i.e., Desikan and Destreaux
methods) and our gross cytoarchitechtonic approach using
downsampled BAs. A major difference between our study and
others is that resting-state alpha activity is typically lower in
patients with schizophrenia, but that was not the case here. It
is possible that differences in alpha power arise later in the
disease given that these all were individuals at the first episode
of psychosis. However, other studies [e.g., (71)] showed re-
ductions of relative alpha power in EEG at the Cz electrode,
suggesting that the abnormality is present early in the disease
course. Eyes-open resting activity may identify functional
networks that differ from on-task functional networks. Future
studies should compare alpha power between eyes-open and
eyes-closed conditions as well as between active and passive
tasks and should compare EEG and MEG cortical surface
resolved measures. Furthermore, such work should investigate
changes longitudinally and across the disease course and
should compare network segmentation using NMF to other
methods such as Graph-ICA (72) on the same MEG dataset. In
addition, while the sample size in this study is similar to others
in the literature, it limits the statistical significance of the find-
ings and may allow for overfitting of outliers in the model.
Although this is a relatively large sample of subjects with FESz
(n = 31), it was underpowered for the large number of corre-
lations performed. Thus, caution in interpretation and replica-
tion in an independent sample is needed. However, because
this is the first study to use NMF to derive data-driven func-
tional networks in alpha activity showing aberrations in sub-
jects with FESz, it is important to examine the full rich set of
clinical symptoms in this special sample—1% of the popula-
tion at its first transition to psychosis. We leave it to the
informed reader’s discretion to interpret the correlations re-
ported for individual items. Medication may affect brain
network function, and we are unable to address that possible
confound. Still, participants were only acutely medicated and
had less than 2 months of lifetime exposure, so chronic
medication effects are unlikely. Future work should assess
these possible confounds now that candidate systems have
been identified.

Overall, we computationally derived neurophysiological
networks that display deficient alpha activity in subjects with

Alpha Network Deficits in First-Episode Schizophrenia

FESz. These abnormalities were associated most strongly with
overall symptom severity and thought disorder, with the left
posterior temporal network also being associated with positive
and negative symptom factors. By isolating these irregular
networks hidden within the context of undetectable differences
in global alpha activity, NMF proves to be a promising tool to
isolate communication networks for detailed analyses of
systems-level pathophysiology. Using methods that are rela-
tively light computationally, it is possible to identify networks
and regions that show selective dynamic abnormalities close
to the emergence of psychosis, which may in turn be central to
the etiology of psychopathology. These network locations and
dynamic abnormalities also provide features to train future
data-driven algorithms and guide investigation of pathology in
more complex features. Alpha activity, one of the basic carrier
frequencies in the brain that establishes distributed cortical
circuits, identifies core areas of pathophysiology in the early
schizophrenia spectrum.
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