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According to a classical view of face perception (Bruce and Young, 1986; Haxby et al., 2000), face identity and facial expres-
sion recognition are performed by separate neural substrates (ventral and lateral temporal face-selective regions, respectively).
However, recent studies challenge this view, showing that expression valence can also be decoded from ventral regions
(Skerry and Saxe, 2014; Li et al., 2019), and identity from lateral regions (Anzellotti and Caramazza, 2017). These findings
could be reconciled with the classical view if regions specialized for one task (either identity or expression) contain a small
amount of information for the other task (that enables above-chance decoding). In this case, we would expect representations
in lateral regions to be more similar to representations in deep convolutional neural networks (DCNNs) trained to recog-
nize facial expression than to representations in DCNNs trained to recognize face identity (the converse should hold for
ventral regions). We tested this hypothesis by analyzing neural responses to faces varying in identity and expression.
Representational dissimilarity matrices (RDMs) computed from human intracranial recordings (n = 11 adults; 7 females)
were compared with RDMs from DCNNs trained to label either identity or expression. We found that RDMs from DCNNs
trained to recognize identity correlated with intracranial recordings more strongly in all regions tested—even in regions
classically hypothesized to be specialized for expression. These results deviate from the classical view, suggesting that face-
selective ventral and lateral regions contribute to the representation of both identity and expression.

Key words: deep neural networks; face identity recognition; face processing; facial expression recognition; intracranial
electroencephalography

Significance Statement

Previous work proposed that separate brain regions are specialized for the recognition of face identity and facial expression.
However, identity and expression recognition mechanisms might share common brain regions instead. We tested these alter-
natives using deep neural networks and intracranial recordings from face-selective brain regions. Deep neural networks
trained to recognize identity and networks trained to recognize expression learned representations that correlate with neural
recordings. Identity-trained representations correlated with intracranial recordings more strongly in all regions tested, includ-
ing regions hypothesized to be expression specialized in the classical hypothesis. These findings support the view that identity
and expression recognition rely on common brain regions. This discovery may require reevaluation of the roles that the ven-
tral and lateral neural pathways play in processing socially relevant stimuli.

Received June 20, 2022; revised Mar. 25, 2023; accepted Apr. 17, 2023.
Author contributions: E.S., A.A., R.M.R., A.G., and S.A. designed research; A.A., R.M.R., and A.G. performed

research; E.S. and S.A. analyzed data; E.S. and S.A. wrote the paper.
This work was supported by a CAREER Grant from National Science Foundation Career Grant 1943862 to

S.A., National Institutes of Health Grants R01-MH-107797 and R21-EY-030297 to A.G., and National Science
Foundation Grant 1734907 to A.G. We thank the patients for participating in the iEEG experiments and the
University of Pittsburgh Medical Center Presbyterian epilepsy monitoring unit staff and administration for

assistance and cooperation with our research. We also thank Michael Ward for assistance with the data
collection.

The authors declare no competing financial interests.

Correspondence should be addressed to Stefano Anzellotti at stefano.anzellotti@bc.edu.
https://doi.org/10.1523/JNEUROSCI.1277-22.2023

Copyright © 2023 the authors

The Journal of Neuroscience, June 7, 2023 • 43(23):4291–4303 • 4291

https://orcid.org/0000-0002-3307-0270
https://orcid.org/0000-0003-1746-4656
https://orcid.org/0000-0002-8964-6988
mailto:stefano.anzellotti@bc.edu


Introduction
Humans are exposed to a multitude of faces every day; each face
provides rich information about an individual’s identity and
emotion. The social importance of faces makes it critical that we
understand how we recognize others and their facial expressions.

According to an established hypothesis (henceforth called
the “classical” view), face identity and facial expression are
processed by distinct, specialized pathways (Bruce and Young,
1986; Haxby et al., 2000). In this view, face-selective regions in
ventral temporal cortex (“ventral stream”) are specialized for
identity recognition, while face-selective regions in lateral tem-
poral cortex (“lateral stream”) are specialized for expression
recognition (Haxby et al., 2000). Indeed, previous studies indi-
cate that the ventral stream plays a key role in face identity rec-
ognition. Response patterns in the ventral stream can be used
to decode face identity (Nestor et al., 2011; Anzellotti et al.,
2014; Ghuman et al., 2014; Axelrod and Yovel, 2015; Dobs et
al., 2018; Li et al., 2019; Boring et al., 2021), and participants
with face recognition deficits have reduced structural connec-
tivity in ventral regions (Thomas et al., 2009). In parallel, other
studies indicate that the lateral stream plays a role in expression
recognition. Facial expression valence can be decoded from a
region in lateral temporal cortex: the face-selective posterior
superior temporal sulcus (pSTS; Peelen et al., 2010; Skerry and
Saxe, 2014). Additionally, patients with pSTS damage experi-
ence expression recognition deficits (Fox et al., 2011), suggest-
ing a causal role of the lateral stream in expression recognition.

While these findings support the involvement of the lateral
stream in expression recognition, they do not rule out that the
ventral stream might also play a role. Similarly, results suggesting
ventral stream involvement in identity recognition do not rule
out that the lateral stream might contribute to identity recogni-
tion. Considering this, an alternative hypothesis suggests that
identity and expression are not necessarily independent neural
mechanisms (Duchaine and Yovel, 2015). The ventral and lateral
streams, instead, might differ in whether they represent form or
motion (Duchaine and Yovel, 2015; Pitcher and Ungerleider,
2021). Consistent with this alternative, facial expression can be
decoded in ventral face-selective regions (Skerry and Saxe,
2014; Li et al., 2019), and face identity can be decoded in lateral
regions (face-selective pSTS; Hasan et al., 2016; Anzellotti and
Caramazza, 2017; Dobs et al., 2018). Furthermore, behavioral
studies find correlations between expression and identity recog-
nition abilities (Connolly et al., 2019).

Even considering this evidence, it is still possible that ven-
tral and lateral streams might be specialized for identity and
expression recognition, respectively. Behavioral correlations
between recognition abilities might result from differences
in upstream regions before face processing separates into
ventral and lateral streams. Furthermore, ventral representa-
tions specialized for identity might contain a small amount
of expression information that would support fMRI decod-
ing, and vice versa. Compatible with this possibility, compu-
tational studies using deep convolutional neural networks
(DCNNs) found that identity-trained networks encode some
expression information (Colón et al., 2021), and vice versa
(Schwartz et al., 2023). In fact, one study found that, in con-
trast to untrained DCNNs and DCNNs trained to recognize
nonface objects, DCNNs trained to recognize face identity
have expression-selective units that share similarities with
human expression recognition, making similar errors (Zhou
et al., 2022). Together with our results, this suggests that
identity and expression recognition might share common

mechanisms both in the brain and in DCNNs. While DCNNs
trained to recognize identity encode some expression infor-
mation (and vice versa; Colón et al., 2021; Schwartz et al.,
2023), DCNNs trained to recognize identity and DCNNs
trained to recognize expression still have distinct representa-
tions (Fig. 1; see Materials and Methods). If the classical view is
correct, representational dissimilarity matrices (RDMs) from
identity-trained DCNNs should correlate with RDMs from ven-
tral regions, and, symmetrically, RDMs from expression-trained
DCNNs should correlate with RDMs from lateral regions.
Critically, there would need to be an interaction between DCNN
type (identity or expression trained) and brain region. By con-
trast, if ventral and lateral regions contribute to both identity and
expression recognition, then one would anticipate that the
DCNNs should correlate with both ventral and lateral regions,
and that there would not necessarily be an interaction between
DCNN type and brain region. Furthermore, these conclusions
hold if the models either equally correlate with the regions or if
one model outperforms the other for both sets of regions. We
test this directly by analyzing neural responses measured with in-
tracranial electroencephalography (iEEG) to faces varying in
identity and expression. Comparing the representational geome-
try of neural responses in ventral and lateral regions to the repre-
sentational geometry in DCNNs trained to recognize identity
and expression, we examine whether RDMs extracted from these
DCNNs correlate differentially with RDMs based on responses
in face-selective electrodes in ventral and lateral regions.

Materials and Methods
Participants
The experimental protocols were approved by the Institutional Review
Board of the University of Pittsburgh. Written informed consent was
obtained from all participants. Participants were a subset of patients
selected a priori from Li et al. (2019) and Boring et al. (2021), who per-
formed two variations of the face individuation task. Eleven human
patients (7 females; mean age, 31.8 years; SD, 9.89) underwent surgical
placement of electrocorticographic (surface and depth) electrodes for
seizure onset localization. One subject was initially excluded because of
noisy data (as determined with a reliability analysis described in the
Temporal localizer subsection). None of the subjects showed evidence of
epileptic activity on electrodes located in the ventral and lateral temporal
lobes.

Experimental design and statistical analysis
Stimuli. Subjects viewed face images from the Karolinska Directed

Emotional Faces (KDEF) dataset (Lundqvist et al., 1998). The KDEF
dataset consists of 4900 images depicting 70 individuals (50% female)
showing seven different expressions from five different angles. The fol-
lowing expression categories were included in the experiment: happy,
sad, afraid, angry, and neutral. Each combination of a face identity and a
facial expression was shown in different viewpoints, including 0° (frontal
view), 45° (left and right views), and 90° (profile; left and right views).

Experimental paradigm. Before completing the main task, partici-
pants completed a functional localizer task (Li et al., 2019; Boring et al.,
2021). Subjects were shown images of faces, houses, bodies, words, ham-
mers, and phase-scrambled faces. More details about the design of the
functional localizer can be found in the studies by Li et al. (2019) and
Boring et al. (2021). The data from the functional localizer was used to
identify electrodes that respond selectively to faces. An electrode was
deemed face selective using the criteria described in the Electrode local-
ization section.

Two different sets of participants completed two different versions of
the experiment (Li et al., 2019; Boring et al., 2021), which we will refer to
as A and B. In both experiments, each trial began with a face image pre-
sented for 1000ms. This was followed by a 500ms intertrial interval,
during which a fixation cross was presented at the center of the screen.
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Subjects were instructed to press a button to identify whether the pre-
sented face was male or female. Subjects were asked to respond as
quickly and as accurately as possible. A set of 10 practice trials was exe-
cuted before the start of the experiment.

In experiment A, each subject performed one session containing 600
trials. Subjects viewed a set of stimuli that contained eight identities, five
expressions, and five viewpoint angles (left/right profile, left/right 45°,
and frontal). Each stimulus was presented three times within a session.
In experiment B, subjects performed at least two sessions and viewed a
different subset of KDEF stimuli. Subjects viewed a set of stimuli that
contained 40 identities, five expressions, and three viewpoint angles
(profile, 45°, and frontal). Each stimulus was shown only once per
session.

Data preprocessing. Data were preprocessed at the University of
Pittsburgh. Further details can be found in the studies by Li et al. (2019)
and Boring et al. (2021). The data analyzed here contain 14 depth elec-
trodes and 11 surface electrodes. Depth electrodes and surface electrodes
were used to record local field potentials at 1000Hz. Reference and
ground electrodes were distantly placed from the recording electrodes
subdurally and having contacts oriented toward the dura. Surface area of
the recording site was similar across grid and strip electrode contacts. In
this manuscript, “electrode contacts” will be referred to as “electrodes.”
There were no consistent differences in neural responses observed

between the grid and depth electrodes. To extract single-trial potential
signals, the raw data were bandpass filtered, preserving the frequencies
from 0.2 to 115Hz. This step was implemented using a fourth-order
Butterworth filter. After removing slow and linear drift as well as high-
frequency noise, a 60Hz line noise was also removed with 55–65Hz as
the stop band. Single-trial potentials were time locked to the stimulus
onset for the trial with the signal sampled at 1000Hz.

Raw data were also inspected to identify and reduce artifacts. There
were no ictal events detected. The mean maximum amplitude across all
trials was computed, and any trials with a maximum amplitude 5 SDs
above the mean were discarded. Trials that had a difference of �25mV
between back-to-back sampling instances were discarded as well. This
resulted in,1% of trials being removed.

Electrode localization. The location of the electrodes (Fig. 2A) was
determined using an automated method that was used to coregister grid
electrodes and electrode strips (Hermes et al., 2010). Patient high-resolu-
tion postoperative CT scans were coregistered with anatomic MRI scans
to section electrode contacts before patients underwent surgery and im-
plantation of the electrodes. Preoperative and postoperative imaging
scans were also used to localize stereo EEG electrodes. Face-selective
electrodes were identified by analyzing data from a functional localizer,
during which participants were shown images of faces, bodies, words,
hammers, houses, and scrambled faces. An electrode was defined as face

Figure 1. Face representations in a DenseNet trained to recognize identity or expression. A, KDEF stimuli (AF27HAS, AM01AFS, AF06ANS, AM29AFS) and neural network architecture exam-
ples. B, RDMs of the identity DenseNet features from KDEF images used in version A of the experiment. C, RDMs of the expression DenseNet features from KDEF images used in version A of the
experiment. D, Kendall t values between identity DenseNet RDMs and expression DenseNet RDMs. Each tick on the horizontal axis represents an identity DenseNet RDM, and each tick on the
vertical axis represents an expression DenseNet RDM. C1, Conv 1; D1, dense block 1; D2, dense block 2; D3, dense block 3.
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selective if its temporal response patterns could be used to decode faces
from other object categories significantly above chance (Li et al., 2019;
Boring et al., 2021).

Deep convolutional neural network models. DCNNs were imple-
mented to model the neural data. Each network was trained to per-
form one task only, either identity recognition or expression
recognition. Therefore, identity-trained models will be referred to
as identity DCNNs, and the expression-trained models as expression
DCNNs. For both the identity and expression DCNNs, we used a
densely connected architecture (DenseNet; Huang et al., 2017; Fig.
1A) as well as a residual neural network (ResNet-18) architecture.

The identity DCNNs were trained to label identities using the
CelebA dataset (http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html).
CelebA consists of .300,000 images. To match the size of the dataset
used for the two networks, a subset of CelebA was used. The subset
contained 28,709 images for training and an additional 3589 images
labeled for testing, containing a total of 1503 identities. These identi-
ties were randomly chosen, ensuring that at least 20 images were
available for each identity. All images were sized 48� 48 pixels and
grayscale.

The expression DCNNs were trained to label expressions using face
images from the Facial Expression Recognition 2013 (FER2013) dataset

(Goodfellow et al., 2013). The dataset is split to contain 28,709 images
specified for training and 3589 images labeled as “public test” for valida-
tion. All images were sized 48� 48 pixels and grayscale.

Once trained, the DCNNs were tested on their ability to perform
identity and expression recognition using the KDEF dataset (Lundqvist
et al., 1998). This was done by freezing the weights of DCNNs and
extracting the activations of units in the last convolutional layer of each
network for each of the images. Activations for the different images were
then used as the inputs to a simple readout layer. To test for identity
labeling, the readout layer was trained on all KDEF images except from
one expression category (85.7% train, 14.3% test). The left-out expres-
sion category was then used to test the ability of the network to label
identity. Cross-validation was performed so that each expression cate-
gory could be left out for training (seven testing sets) and performances
were averaged. To test for expression labeling, images from seven identi-
ties were held out of the training set for the readout layer (90% train,
10% test). Cross-validation was performed so that each set of 7 identities
could be left out for training (10 testing sets), and performances were
averaged.

The DenseNet trained to recognize identity achieved an accuracy of
26.5% on a left-out subset of CelebA, and the DenseNet trained to recog-
nize expression achieved an accuracy of 63.5% on a left-out subset of

Figure 2. Face-selective electrodes and Kendall t B correlations between their representational similarity and the representational similarity in DenseNet layers. A, Face-selective electrode
locations (n= 24). B, Semipartial t B values were computed to examine contribution across layers. This is plotted as a cumulative value obtained from each model and averaged over electrodes.
SEM bars are depicted. C, Kendall t B values between face-selective iEEG RDMs and layer feature RDMs from the identity DenseNet averaged over electrodes (n= 24). SEM bars are depicted. D,
Kendall t B values between face-selective iEEG RDMs and layer feature RDMs from the expression DenseNet averaged over electrodes (n= 24). SEM bars are depicted.
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FER2013 (Schwartz et al., 2023) Using the DenseNet, each network was
able to transfer to KDEF for the task it was trained to perform (identity
DenseNet on identity recognition: accuracy=95.2%, chance level = 1.42%;
expression DenseNet on expression recognition: accuracy=81.9%, chance
level = 14.2%). The identity DenseNet was able to label facial expression
on the KDEF dataset with an accuracy of 77.7%. The expression DenseNet
was able to label face identity on the KDEF dataset with an accuracy of
89.7%.

To facilitate comparison with previous studies, we additionally
trained an identity and an expression DCNN based on the ResNet
architecture (ResNet-18; He et al., 2016). The ResNet-18 networks
were trained using the same datasets that were used for the
DenseNets. The ResNet-18 trained to recognize identity achieved an
accuracy of 28.0% on a left-out subset of CelebA, and 91.5% on KDEF
(chance level = 1.42%). The ResNet-18 trained to recognize expres-
sions achieved an accuracy of 61.3% on a left-out subset of FER2013,
and 66.4% on KDEF (chance level = 14.2%). When transferring to the
different tasks, the identity ResNet-18-labeled facial expression and
the expression ResNet-18-labeled identity with accuracies of 55.7%
and 80.1% on KDEF, respectively. Therefore, both DCNNs performed
better than chance on left-out images from the datasets that they were
trained on, as well as on images from the KDEF dataset. However,
they did not transfer to KDEF as well as the DenseNets. A ResNet-18
pretrained on ImageNet to perform object recognition (henceforth
referred to as the object ResNet-18) was implemented as an additional
model comparison. Details on the training can be found in the study
by He et al. (2016). The object ResNet-18 was trained using images in
RGB mode. Since the identity and expression DCNNs were trained
using grayscale images, we modified the weights of the conv1 layer
here by summing over the dimension of the input channels. The
object ResNet-18 was able to label identity and expression on KDEF
images with accuracies of 96.2% (chance level = 1.42%) and 61.4%
(chance level = 14.2%), respectively. A randomly initialized DenseNet
and Resnet-18 (same architectures as trained DCNNs) were also used
as additional control analyses.

Training and testing datasets comparisons. Since we could not access
a sufficiently large dataset including both identity and expression labels,
the identity DCNNs and expression DCNNs were trained using two dif-
ferent datasets. It is possible that the testing dataset (KDEF) might be
more similar to one of the two training datasets (either CelebA or
FER2013). If this is the case, the networks for which the training and
testing datasets are more similar might perform better. To test this possi-
bility, both training datasets were compared with the testing dataset by
evaluating the similarity between image representations using features
from the object ResNet-18 (see “Deep neural network models”). The
object-trained ResNet-18 was used to extract feature representations
from different layers for images in the identity and expression training
datasets, and for images in the testing dataset. For each layer, Pearson r
correlation coefficients were computed between the features of image
pairs where one image is taken from the testing dataset (KDEF) and one
from either the identity or expression training dataset (this analysis was
performed separately for each training dataset). Correlations were com-
puted for one channel at a time and averaged across channels. This was
done for 100 different randomly chosen image pairs, and the correlations
were averaged across the pairs. For each layer, this procedure yielded a
measure of the similarity between the training and testing datasets based
on the features in that particular layer. To estimate the robustness of the
results, the analysis was conducted 10 times, each time selecting a differ-
ent randomly chosen set of image pairs.

When comparing images from CelebA and KDEF, this analysis
yielded mean values of 0.1254, 0.3606, 0.1894, 0.2430, and 0.1244 for
conv1, and hidden layers 1�4 respectively. When comparing images
from FER2013 and KDEF, this analysis yielded mean values of 0.1708,
0.4263, 0.2141, 0.2739, and 0.0848 for conv1, and hidden layers 1–4,
respectively.

The similarity between the training datasets and the testing dataset is
comparable. In addition, neither of the training datasets is more similar
to the testing dataset for all layers of the object ResNet-18. If anything,
the FER2013 dataset shows greater similarity to KDEF for most layers.

Therefore, if the CelebA-trained networks were to better account for
neural responses, it would be unlikely that this is because of CelebA
being more similar to the testing dataset (KDEF).

Representational similarity analysis: comparison between DCNNs.
Before comparing the representations in DCNNs to neural responses,
we sought to quantify the differences in the representations learned by
the identity DCNNs and by the expression DCNNs. Transfer-learning
tests conducted in a previous study demonstrate that these DCNNs learn
representations that can be used to perform the other task with above-
chance accuracy (Schwartz et al., 2023). For example, representations in
layers of the expression of DenseNet could be used to read out the iden-
tity of faces (Schwartz et al., 2023). However, this does not imply that the
identity and expression DenseNets have the same representations.

To test the similarity of the representations in the two DCNNs, we
used representational similarity analysis (RSA). We analyzed the repre-
sentations in multiple hidden layers of the neural networks. Specifically,
features from either four or five hidden layers were extracted: the first
convolutional layer, and the last layer in each of the three dense blocks
(after shrinkage) or the last layer in each of the four residual blocks. For
each of these layers, we calculated RDMs using a three-step procedure.
First, we extracted feature vectors for all KDEF images used in the
experiment. Next, we mean centered the feature vectors by calculating
and subtracting the mean feature vector across all KDEF images. Finally,
for all pairs of images, we calculated the correlation distance between
their mean-centered feature vectors (correlation distance is 1� r, where
r is Pearson’s correlation). In experiment B, information about view-
point only included the viewpoint angle, without distinguishing between
left and right viewpoints, therefore the feature vectors for the left and
right viewpoints were averaged (i.e., left and right profile views averaged,
left and right half views averaged).

This procedure produced RDMs of size 200� 200 for experiment A,
and RDMs of size 600� 600 for experiment B (Fig. 1B,C). Note that, as
described in the Experimental paradigm subsection, the sizes of the
RDMs are different in the two experiments because different subsets of
the KDEF images were used in experiment A and experiment B. In the
end, the Kendall t rank correlation coefficient (tB)was used to compute
the similarity between the RDMs from different layers in the two differ-
ent DCNNs. A 4� 4 cross-network similarity matrix for the trained
DenseNets is shown in Figure 1D.

Representational similarity analysis of neural data. To retain as
much data as possible, we initially performed an analysis on all of the
face-selective electrodes, including those from participants who were
shown each stimulus once. In this analysis, we computed separate RDMs
for each of three temporal windows (125–175, 175–225, and 225–
275ms). This specific temporal range was chosen based on previous
studies on the temporal dynamics of visual face perception (Barbeau et
al., 2008). As discussed in more detail later, it remains possible that some
face information might be encoded in later time windows as well
(Ghuman et al., 2014; Li et al., 2019; Boring et al., 2021; see also the
Temporal localizer subsection). For each temporal window per each
electrode, we extracted a 50-dimensional vector, such that the value for
each dimension reflects the amount of measured response in the corre-
sponding millisecond of the 50ms window. RDMs were obtained by fol-
lowing the same procedure used for the DCNN RDMs, using correlation
distance to determine the dissimilarity between the response patterns for
each pair of stimuli. As in the RSA for the DCNNs, the average response
over all stimuli was subtracted from each stimulus response to remove
any baseline that is stimulus independent.

In addition to this, we performed an RSA restricted to highly reliable
responses from electrodes located in the fusiform gyrus (n=7). Highly
reliable electrodes and time windows were identified following the pro-
cedure described below. We then extracted patterns of response from
each reliable electrode and time window, and performed the RSA follow-
ing the same approach described in the previous paragraph, comparing
neural RDMs to RDMs extracted from the DenseNet models.

Temporal localizer. We sought to identify time windows during
which face-selective electrodes show the most reliable responses. The
data time series was segmented using disjoint, successive time windows
of 50ms. The first window was centered at 0 ms post-stimulus onset,
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and the last at 500 ms. Therefore, the windows included time points
starting from 25ms before stimulus onset to 525ms after onset. Disjoint
windows were used to reduce the number of multiple comparisons. To
identify which of the time windows contained relatively less noise com-
pared with the amount of base signal, all presentations of the neural
response of a stimulus were correlated within a specific time window.
An average correlation over all time windows for that stimulus was
obtained as well. The average correlations across all time windows
were then subtracted from the time window-specific correlations. A
paired t test was performed between the correlation of the stimulus
responses for a given time window and the average correlation of the
mean response averaged over all time windows for that stimulus
(p, 0.05). This determined which of the time windows contained
response patterns whose test–retest reliability was significantly higher
than average. To correct for multiple comparisons, all t tests were
Bonferroni corrected. One electrode was excluded from the RDM
analysis because of not containing any time windows with reliable
responses (p. 0.05).

Representational similarity analysis: comparison between neural ac-
tivity and DCNNs. We next aimed to compare the neural representa-
tions in specific time windows to the representations in the DCNNs. In
particular, we evaluated the extent to which RDMs computed using the
identity DCNNs and using the expression DCNNs correlate with RDMs
based on the iEEG measurements (Kriegeskorte and Kievit, 2013;
Khaligh-Razavi and Kriegeskorte, 2014). To calculate the concordance
between the RDMs of the DCNN and the neural RDMs, we performed
two types of analysis. In the first type of analysis, we compared the
RDMs extracted from neural data to RDMs extracted from individual
layers of the identity DCNNs and of the expression DCNNs, calculating
the Kendall tB. Since negative variance-explained values are uninterpret-
able, any negative tB correlations were set to 0 (Fang et al., 2022). The
smallest of the negative values was �0.003. This affected a total of 37 of
360 t values. This procedure was repeated using RDMs from the object
ResNet-18 and untrained DCNNs as well. However, since this analysis
compares neural representations to the representations in one DCNN
layer at a time, one limitation of this analysis is that it does not capture
the overall correspondence between neural data and the representations
across all layers of a DCNN jointly.

Comparing neural representations to DCNN representations one
layer at a time does not reveal to what extent different layers of the
DCNN encode redundant information or unique information. To
address this question, we introduced a new type of analysis using semi-
partial Kendall t rank correlation (Kim, 2015) to evaluate the overall
correspondence between the RDMs extracted from the neural data and
each of the identity and expression DCNNs when considering jointly the
representations in all layers of the DCNNs.

Semipartial correlations measure the strength of the relationship
between two variables (i.e., between the neural RDM and the first hidden
block RDM) while controlling for the effects of other variables (i.e., the
initial convolutional RDM). Within each DCNN model, the semipartial
tB was calculated for each layer, controlling for the effect of the previous
layers. Then, the semipartial tB values were summed to obtain a cumula-
tive tB value. This allows one to control for redundancy between the
layers, evaluating the overall similarity between the models and the data
without inflating the tB values.

After calculating the semipartial tB values between the face-selec-
tive electrodes and the identity and expression DCNNs, we performed
model comparison using Bayes factor to potentially establish evidence
for the absence of differences between the ability of DCNN to account
for neural responses (Keysers et al., 2020). This was done to evaluate
the statistical evidence for the possibility that there is no difference
between the identity DCNN’s representational similarity to the neural
representations and the expression DCNN’s representational similar-
ity to the neural representations (and more precisely, that they come
from a same distribution. The analysis with Bayes factor was per-
formed using the set of all face-selective electrodes to maximize statis-
tical power.

Relative contribution of identity and expression. Next, we set out to
test whether different sets of electrodes were more strongly correlated

with one DCNN over the other. The dataset included electrodes located
in the ventral stream as well as electrodes located in lateral temporal
regions. If ventral regions are specialized for identity recognition and lat-
eral regions are specialized for expression recognition, ventral electrodes
might have a greater cumulative tB with the identity DCNN, while lat-
eral electrodes might have a greater cumulative tB with the expression
DCNN. Alternatively, electrodes in ventral and lateral regions might be
similar in terms of their relative correspondence to the identity DCNN
and to the expression DCNN.

To compare the relative similarity of neural RDMs in individual elec-
trodes to the RDMs of the identity and expression DCNNs, each electrode
at each time window was plotted as a point in a 2D space, where the coor-
dinate along the x-axis was determined by the cumulative Kendall tB
between the electrode RDM and the identity DCNN RDM, and the coor-
dinate along the y-axis was determined by the cumulative Kendall tB
between the RDM of the electrode and the expression of DCNN RDM. If
ventral electrodes have comparatively higher Kendall tB values with the
identity DCNN, and lateral electrodes have comparatively higher Kendall
tB values with the expression DCNN, the two sets of electrodes should fall
on lines with different slopes, where the slopes correspond to the ratio
between the cumulative tB for the identity model and the cumulative tB
values for the expression model. In particular, electrodes in the ventral
stream that are comparatively better explained by the identity DCNN
should fall on a line that is closer to the identity axis, while electrodes in
the lateral stream should fall on a line that is closer to the expression axis
(despite electrodes varying in how well they are explained overall). This
would demonstrate the presence of an interaction between DCNN model
type and brain region (in line with the classical view). By contrast, if all the
electrodes fall on the same line, it means that the relative performance of
the identity and expression DCNN models at explaining neural responses
is similar for the two streams (in contrast with the classical view), demon-
strating the absence of an interaction between DCNN model type and
brain region.

Frequentist tests are designed to test for the presence of significant
interactions, but a lack of significant effects does not demonstrate no inter-
action. This makes it challenging to test for the absence of an interaction.
However, Bayesian tests are built in such a way that they can evaluate the
strength of evidence for the absence of an effect. Thus, a Bayesian
approach is implemented to evaluate the relative support for a model in
which all the electrodes fall on the same line compared with a model in
which the electrodes can fall on two separate lines, one for each stream.

To statistically test whether ventral and lateral electrodes fall on lines
with different slopes, we fit the data with two competing linear regression
models: one model with two separate slopes for the ventral and lateral elec-
trodes, and one model with a single slope. We then performed model selec-
tion with the Bayesian information criterion (BIC) to determine which
linear regression model provides a better account for the data. A lower BIC
score signifies the better model. The difference between BIC scores, d =
BICseparate � BICcombined, determines the size of the effect: a difference.10
denotes strong evidence for the better model (Raftery, 1995).

To further examine the ratio between identity and expression model
performance for the DenseNet models, we calculated an index ranging
from�1 to1, where negative values indicate that the neural represen-
tations correlate more with representations in the expression DCNN,
and positive values indicate that they correlate more with the identity
DCNN. To accomplish this, for each electrode and time window, we
calculated the index log ratio (LR) = log(t id/t exp). This was then plot-
ted as a histogram where LRs between �1 and 0 represent expression-
preferring electrode/time window combinations and LRs between 0
and 11 represent identity-preferring electrode/time window combi-
nations. When conducting comparisons with the DenseNets, three
electrodes had cumulative tB values �0 in one time window; therefore,
the log ratio could not be calculated, and they were not included in the
log ratio histogram (Fig. 3B).

Data availability
The code for training and extracting neural network features for both
the identity and expression models can be found here: https://github.
com/els615/3DenseNets.
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Results
Representations in deep networks trained for identity and
expression recognition
We compared the representations in two DCNNs with the same
DenseNet architecture (Fig. 1A) where one network was trained to
recognize identity and the other was trained to recognize expres-
sion. For each network, we calculated RDMs using activations in
the first convolutional layer, and in the last layer of each dense
block (Fig. 1B,C). To compare the feature representations across
the two DCNNs, the similarity between the RDMs was computed
using Kendall tB (Fig. 1D). Early layers were more similar to one
another compared with late layers. The tB values between the
DCNNs steadily decreased from layer to layer, indicating that the
representations in the two DCNNs become increasingly different
in later layers. A similar pattern was found when comparing the
identity and expression ResNet-18 representations.

Localization of face-selective electrodes
After probing the representations of faces in the DCNNs, we
localized face-selective electrodes to analyze the neural represen-
tations of the same set of face stimuli. Of the 1079 total electrodes
across 11 participants, 25 were found to be face selective (2.3%).
Of these, 25 electrodes, 12 were located in the ventral stream
(defined as the ventral portion of the temporal cortex and of the
occipital cortex anterior to area V2) with 10 of them being
located in the fusiform [as determined with Neurosynth
(Yarkoni et al., 2011); to confirm that these electrodes were
located within Brodmann area 37, we additionally used MarsBar
(Brett et al., 2002)]. However, one of these face-selective electro-
des did not surpass our reliability analysis and was removed
from further analyses. The remaining 24 electrodes are shown in
Figure 2A. Eight of the face-selective electrodes were located in
the lateral stream (defined as the lateral temporal cortex and lat-
eral occipital cortex anterior to area V2, including V3d, V5, and
the superior temporal sulcus), and four of the electrodes were
located in regions outside the ventral and lateral streams, and
thus were labeled as “other.”

Comparison between face-selective neural responses and
deep networks
Having identified the face-selective electrodes, we next sought to
compare representations in these electrodes to representations in

the trained DenseNet models. To this end, for each electrode and
time window, we computed neural RDMs, and we compared
them to the RDMs extracted from the DenseNets using Kendall
tB. This analysis revealed that representational similarity
between the model RDMs and the neural RDMs decreased from
the 125–175 ms time window to the 225–275ms time window
(Fig. 2C,D) for both the identity and expression models (this
might be because of a decline in the reliability of the signal; see
Discussion). However, within each time window, Kendall tB val-
ues were comparable for both DenseNets (Fig. 2C,D).

To probe more rigorously the representational similarity be-
tween neural responses and the identity and expression DCNNs
overall, we used a novel approach, which consists of calculating a
cumulative Kendall tB value between neural responses and multi-
ple layers of a DCNN combined (for details, see Materials and
Methods). While the cumulative Kendall tB value between the
identity DenseNet and neural responses was numerically higher
than the expression DenseNet (Fig. 2B), the difference showed
weak evidence for one model over the other (Bayes factor, 0.412–
0.441).

To evaluate the robustness of our results, we then repeated
our analysis using ResNet-18 for our model. Following the same
approach as the DenseNet analysis, RDMs were extracted from
the ResNet-18 and compared with each neural RDM. Similar to
the DenseNet results, representational similarity between the
ResNet-18 RDMs and the neural RDMs decreased from the 125–
175 ms time window to the 225–275ms time window (Fig. 4A,
B), for both the identity and expression models. For almost all
time windows, the identity ResNet-18 outperformed the expres-
sion ResNet-18 (Fig. 4A,B). The Bayes factor was performed on
the cumulative Kendall tB values. This again found weak evi-
dence for one model over the other (Bayes factor, 0.444–0.503).

Previous work (Storrs et al., 2021) found similar amounts of
correspondence between trained and untrained neural network
models and neural RDMs (unless tuning was used). Consistent
with this, untrained DCNNs show similar correspondence with
neural responses in this study. While identity and expression
DCNNs yielded different representations (Fig. 1B–D), these dif-
ferences did not capture corresponding differences between the
neural responses in ventral and lateral regions. The untrained
DenseNet layer correlations to the neural data had values ranging
between 0.0567–0.0623, 0.0355–0.0416, and 0.0105–0.0124 for

Figure 3. Variation across individual electrodes. A, Scatter plot comparing t B values from identity and expression DenseNet models matched on electrode (n= 24) and time window. The
neural response of each electrode was segmented into 3 time periods, generating 72 data points. B, Histogram showing relative contribution of identity and expression DenseNet models (69
datapoints; 3 electrodes had one time window dropped). Expression-preferring electrodes have a log ratio from�1 to 0 while identity-preferring electrodes have a log ratio from 0 to11.

Schwartz et al. · Common Brain Areas Encode Identity and Expression J. Neurosci., June 7, 2023 • 43(23):4291–4303 • 4297



time windows 125–175, 175–225, and 225-275 ms, respectively.
Neural responses showed a lower correspondence but similar
pattern with the untrained ResNet-18 (Table 1). The ResNet-18
model that was pretrained on object recognition (Table 1) also
performed comparably to the identity DCNNs. Overall, however,
the identity ResNet-18 outperformed the pretrained object
network.

Examining relative similarity in individual electrodes
The pattern of results observed across all face-selective electrodes
might arise from averaging electrodes with distinct properties:
ventral temporal electrodes in regions specialized for identity
recognition, with greater representational similarity to the iden-
tity DCNN, and lateral temporal electrodes in regions specialized
for expression recognition, with greater representational similar-
ity to the expression DCNN. Alternatively, the representations
measured by electrodes in both ventral and lateral temporal
regions might be similar in terms of the extent to which they cor-
relate with activations in the identity and expression DCNNs,
respectively.

Table 1. ResNet-18 and Neural responses

Conv 1
Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Hidden
layer 4

125–175 ms
Identity ResNet-18 0.0532 0.0616 0.0702 0.0861 0.1067
Expression ResNet-18 0.0530 0.0552 0.0687 0.0694 0.0456
Object ResNet-18 0.0523 0.0695 0.0772 0.0728 0.1014
Untrained ResNet-18 0.0540 0.0525 0.0478 0.0422 0.0372

175–225 ms
Identity ResNet-18 0.0333 0.0399 0.0438 0.0534 0.0688
Expression ResNet-18 0.0334 0.0357 0.0435 0.0435 0.0279
Object ResNet-18 0.0329 0.0433 0.0468 0.0449 0.0664
Untrained ResNet-18 0.0336 0.0331 0.0306 0.0272 0.0233

225–275 ms
Identity ResNet-18 0.0101 0.0127 0.0141 0.0153 0.0161
Expression ResNet-18 0.0103 0.0121 0.0136 0.0139 0.0092
Object ResNet-18 0.0100 0.0134 0.0145 0.0140 0.0185
Untrained ResNet-18 0.0101 0.0099 0.0093 0.0083 0.0071

Figure 4. Face-selective electrodes and Kendall t B correlations between their representational similarity and the representational similarity in ResNet-18 layers. A, Kendall
t B values between face-selective iEEG RDMs and layer feature RDMs from the identity ResNet-18 averaged over electrodes (n = 24). SEM bars are depicted. B, Kendall t B val-
ues between face-selective iEEG RDMs and layer feature RDMs from the expression ResNet-18 averaged over electrodes (n = 24). SEM bars are depicted. C, Scatter plot com-
paring t B values from identity and expression ResNet-18 models matched on electrodes (n = 24) and time window. The neural response of each electrode was segmented
into 3 time periods, generating 72 data points.
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We investigated this question with two converging analyses.
First, for each electrode we evaluated how similar the electrode is
to the identity DenseNet RDM and then how similar it is to the
expression DenseNet RDM. We used these two values as coordi-
nates for a scatter plot (Fig. 3A). If ventral electrodes have com-
paratively higher cumulative Kendall tB values with the identity
DenseNet, and lateral electrodes have comparatively higher cu-
mulative Kendall tB values with the expression DenseNet, the
two sets of electrodes should fall on two different lines with dif-
ferent slopes. Instead, all observed electrodes were located along
one line, showing a similar ratio of expression tB to identity tB
(Fig. 3A). To quantify this, we used the BIC (lower values indi-
cate a better model) to compare a model with separate slopes for
the ventral and lateral electrodes separately (BICseparate =
�198.13) to a model with a single slope for both the ventral and
lateral electrodes (BICcombined = �514.41, BICseparate �
BICcombined = 316.28). Differences .10 in BIC values are inter-
preted as providing strong evidence in favor of the model with
lower BIC (i.e., the combined model; Raftery, 1995). All electro-
des (surface and depth) fall on the same line (Fig. 3A), suggesting
that they have a similar ratio of match to the identity and expres-
sion DenseNet models.

The same procedure was repeated using the ResNet-18
model. In accordance with the DenseNet results, the face-selec-
tive electrodes were located along one line, showing a similar ra-
tio of expression tB to identity tB (Fig. 4C).The Bayesian
information criterion analysis confirmed the following: a model
with separate slopes for the ventral and lateral electrodes sepa-
rately had a smaller BIC (BICseparate = �191.91) compared with a
model with a single slope for both the ventral and lateral electro-
des (BICcombined = �478.17, BICseparate � BICcombined = 286.26).
Again, this suggests that there is strong evidence in favor of a
model where ventral and lateral face-selective electrodes are
modeled with a single slope.

Next, we computed an index capturing the relative contribu-
tion of RDMs from the expression DenseNet and RDMs from
the identity DenseNet to account for neural RDMs. The index

ranges from �1 to1: negative values indicate a greater contri-
bution of the expression DCNN, while positive values indicate a
greater contribution of the identity DCNN (for details, see
Materials and Methods). The distribution of index values is
shown in Figure 3B.

Comparison between fusiform neural responses and deep
networks
As a final step, we performed an additional analysis restricted to
highly reliable responses in face-selective electrodes located in
the fusiform, a region known to play a key role in face perception
(Kanwisher et al., 1997). Several electrodes in this region (n=7)
had highly reliable responses across multiple time windows. The
tB values for fusiform-located electrode comparisons were aver-
aged across electrodes for each time window. Figure 5A shows
results examining the contribution across layers of each
DenseNet model. The tB values are higher compared with the
average of all face-selective electrodes shown in Figure 2B–D, but
follow a similar pattern. Within most time windows, the identity
DenseNet model displayed a numerically larger cumulative semi-
partial tB compared with the expression DenseNet model when
examining fusiform electrodes (as was the case in the analysis
with all face-selective electrodes as well). This difference between
the DenseNet models was greatest in the 125–175 ms range.

Figure 5B shows fusiform responses correlated with individ-
ual layers of the identity DenseNet, and Figure 5C shows fusi-
form responses correlated with individual layers of the
expression DenseNet. Similar to the face-selective pattern men-
tioned above, both identity and expression DenseNet models
were best able to explain neural responses in the 125–175ms
range, followed by 175–225 ms, and then 225–275 ms when aver-
aging data over multiple electrodes. The 275–325 and 325–375
ms windows are included for single electrodes that showed reli-
able responses during one of the two periods. Similar to the face-
selective electrodes again, within each time window, later layers
of the identity DenseNet model outperformed earlier layers. This
was not the case for the expression DenseNet model.

Figure 5. Representational similarity Kendall t B correlations between fusiform electrode responses and DenseNet deep network layers. A, Semipartial t B values were computed to examine
contributions across layers for fusiform electrodes (n= 7) in time windows showing high reliability (see Materials and Methods, Temporal localizer subsection). This is plotted as a cumulative
value obtained from each model and averaged over electrodes. SEM bars are depicted for time windows with more than one electrode. B, Kendall t B values between fusiform iEEG RDMs and
layer feature RDMs from the identity DenseNet averaged over electrodes (n= 7). SEM bars are depicted for time windows with more than one electrode. C, Kendall t B values between fusiform
iEEG RDMs and layer feature RDMs from the expression DenseNet averaged over electrodes (n= 7). SEM bars are depicted for time windows with more than one electrode.
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Discussion
According to a classical view in the field, face identity and facial
expression are processed by separate mechanisms (Bruce and
Young, 1986), as follows: identity is processed by regions in
ventral temporal cortex, while expression is processed by
regions in lateral temporal cortex (Haxby et al., 2000). If this is
the case, features optimized to recognize facial expression
should better capture the similarity between neural responses
in lateral regions, and features optimized to recognize face
identity should better capture responses in ventral regions.
Thus, the classical view would predict that RDMs from iden-
tity-trained DCNNs should correlate more with RDMs from
the ventral regions, and RDMs from expression-trained
DCNNs should correlate more with RDMs from the lateral
regions. However, this was not what we found: both identity
and expression DCNNs were able to explain neural responses
in ventral and lateral regions. The identity DCNNs outper-
formed the expression DCNNs in both sets of regions (although
this difference was not found to be significant).

These results cannot be dismissed as being because of noise.
First, if the data were too noisy, we would have encountered
poor correlations between the DCNN models and neural
responses. However, Kendall tB values in this study were compa-
rable to those in other studies (Higgins et al., 2021). It should
also be noted that the Kendall tB for both the identity and
expression DCNN models were close to zero in later time win-
dows, indicating that values found in earlier time windows were
not just because of the method used. Second, statistical analysis
using BIC revealed that the results provide strong support for the
hypothesis that the relative contribution of identity and expres-
sion DCNN models is similar for ventral and lateral electrodes
(Fig. 3). Finally, when restricting our analysis to electrodes and
time windows with very reliable responses, the pattern of results
was unchanged (Fig. 5).

Successful transfer learning can be difficult because of poten-
tial differences in the data distribution between source and target
datasets (Madan et al., 2022). Thus, it is important to determine
whether the neural networks trained for their respective tasks
can successfully generalize to the KDEF dataset. Both the iden-
tity and the expression DCNNs yielded high accuracies on
the KDEF dataset. Despite that the expression DCNN labeled
expressions with a lower accuracy than the identity DCNN
labeled identity, its accuracy was well within the human
range [from 72% (Goeleven et al., 2008) to 89.2% (Calvo and
Lundqvist, 2008)] for the DenseNet. For this reason, while it
is difficult to rule out domain shift problems entirely, it is
unlikely that the accuracy difference between the two
DCNNs is because of a failure of transfer.

Instead, the difference might be driven by task difficulty.
Some facial expressions can be ambiguous even for human
observers (Aviezer et al., 2012; Guo, 2012; Tarnowski et al.,
2017). While expression recognition performance on KDEF
ranges from 72% (Goeleven et al., 2008) to 89.2% (Calvo and
Lundqvist, 2008), human observers are very accurate (.90%)
at recognizing identity (Bruce, 1982; Burton et al., 1999), even
in the presence of changes in viewpoint.

The gender recognition task that the participants per-
formed might have affected their neural responses, and in
turn, their correspondence with the DCNN models. Previous
work demonstrated that attention selectively enhances face
representations (Dobs et al., 2018). It could be argued that
the gender detection task is more similar to an identity task.
However, gender provides only limited information about

identity, and gender information can be decoded from neural
responses earlier than identity information (Dobs et al.,
2019). Despite this, we cannot entirely rule out that the gen-
der recognition task might have differentially engaged iden-
tity recognition mechanisms, potentially enhancing the
amount of identity information in face-selective regions.

Nonetheless, our findings are still difficult to reconcile with the
classical view. If ventral regions are specialized for identity and lat-
eral regions are specialized for expressions, we would expect that a
gender task would enhance ventral responses and leave lateral
responses unaffected (or suppressed). Instead, we find that lateral
responses show robust correlations with the identity DCNN. A
gender recognition task can only enhance identity representations
in lateral regions if there can be identity representations in those
regions to begin with. Therefore, the correspondence between the
identity DCNN and lateral regions challenges the view that repre-
sentations of identity and expressions are separate.

If ventral and lateral regions are not specialized respectively
for the recognition of identity and expression, do they serve the
same functional role? If not, what are their functional differen-
ces? Studies using combined transcranial magnetic stimulation
(TMS) and fMRI (Pitcher et al., 2014) suggest that the pSTS
might receive inputs from both regions responding to motion
and regions encoding shape information. In addition, there is
evidence for pSTS involvement in audiovisual integration (Nath
and Beauchamp, 2012; Anzellotti and Caramazza, 2017; Rennig
and Beauchamp, 2022). Considering this evidence, we speculate
that lateral temporal regions along the superior temporal sulcus
might host the convergence of static visual information, dynamic
visual information, and auditory information.

In seeming contrast to the proposal that recognition of face
identity and facial expression share common neural mechanisms,
some previous studies reported patients with dissociations
between these two abilities. For example, Hornak et al. (1996)
reported a case of a patient with impaired recognition of expres-
sions but spared recognition of identity. However, the patient
had damage in ventral frontal cortex, not in lateral temporal cor-
tex. As proposed in the study by Calder (2011), the processing of
identity and expressions might diverge at later stages, but they
might still rely on common regions in posterior temporal cortex.
In a more recent study (Jansari et al., 2015), one patient (DY)
with acquired prosopagnosia showed identity recognition defi-
cits, but relatively intact expression recognition as tested with
FEEST (Facial Expressions of Emotion: Stimuli and Tests; Young
et al., 2002). However, DY did have difficulty recognizing anger
(Jansari et al., 2015), indicating some impairment for expression
recognition. In addition, while DY was impaired relative to con-
trols at recognizing the identity of upright faces, his performance
was similar to that of controls when distinguishing inverted faces
and fractured faces, suggesting that he might rely on featural in-
formation (Jansari et al., 2015). Such featural information might
have also been sufficient to distinguish between the different
emotions in FEEST. This possibility is consistent with the previ-
ously reported finding that anger recognition is particularly
affected by face inversion (Bombari et al., 2013; Fig. 2): in DY, an
impairment for configural face processing might have led to the
observed difficulties for recognizing the identity of upright faces
and also to his disproportionate difficulty for recognizing anger.
The present findings are part of broader research efforts indicat-
ing that information about object category and other object
properties coexist in common regions within temporal cortex
(Hong et al., 2016). A relevant study reported that speaker iden-
tity and speech content can be decoded in the superior temporal
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cortex (Formisano et al., 2008; Bonte et al., 2014). Together, these
studies reveal that some sets of tasks rely on shared brain regions,
while others are implemented by distinct neural substrates.
Recent work is beginning to investigate what are the optimal
ways of structuring and sharing representations across multiple
different tasks (Zamir et al., 2018; Schwartz et al., 2023).

It is important to note that this study is affected by some limi-
tations. First, the DCNNs were trained using two different data-
sets. It would be preferable to use a training dataset that included
both identity and expression labels, but we were unable to find
one such dataset with a sufficient number of images. To mitigate
this concern, the training datasets we used (FER2013 and
CelebA) are similar in that they include images with a broad
range of variation in viewpoint and pose. The DCNNs trained
with the two datasets both achieved high performance on the
KDEF dataset. It is worth mentioning that even if we had used a
single dataset with labels for both identity and expression, the
same dataset could include very different expressions but similar
identities (or vice versa). Therefore, ensuring that the transfer ac-
curacy of the DCNN is high is essential to determine whether the
training procedure was successful for both identity and the
expression tasks.

The Bayes factor analysis only showed weak evidence for the
abilities of identity DCNN to explain the neural responses com-
pared with the expression DCNNs when evaluating Kendall tB
values for all of the face-selective electrodes together (Fig. 2B,
DenseNet). It is possible that there would be stronger evidence if
more data could have been included in the analysis, but, given
the number of data points available, the evidence for this differ-
ence is only weak. However, even if the difference between the
two models were strong, this would not alter the conclusion that
the results challenge the classical view: Figure 2B includes elec-
trodes from both the ventral and lateral streams, and the BIC
scores strongly favored a single-line fit for both streams (Figs.
3A, 4C).

We found that neither the identity nor the expression DCNN
models accounted for a large proportion of the variance in later
time windows (Figs. 2, 4A,B), suggesting that the DCNN models
we used do not fully capture the structure of face representations.
This conclusion is in line with work showing that feedforward
DCNNs do not offer a complete account of representational simi-
larity between different images of objects (Xu and Vaziri-Pashkam,
2021). Models that incorporate recurrence are promising candidates
to improve the concordance with neural representations (Kar et al.,
2019; Kietzmann et al., 2019). Additional studies are needed to test
whether they provide a better characterization of neural responses
to faces in later time windows.

Recent findings have suggested that object-trained DCNNmod-
els can explain similar or greater variance in neural responses to face
stimuli compared with face-trained DCNN models (Grossman et
al., 2019; Chang et al., 2021; Ratan Murty et al., 2021). Some
research groups have interpreted this to mean that face-selective
cells are not entirely domain specific (the “domain-general view”;
Vinken et al., 2022). Alternatively, it has also been proposed that
face-selective cells may have a generalist-like function (the “general-
ist view”; Chang et al., 2021), in the sense that these cells might sup-
port multiple face perception tasks (e.g., recognition of expressions,
age). If this is the case, DCNNs that encode features that can support
several different face perception tasks would show more similarity
to neural representations of face images. In turn, DCNNs trained to
perform object recognition might encode such a variety of features
because they are trained with many different object classes that vary
widely in shape, color, and texture. This could explain why object

recognition models showmore similarity of neural responses to face
images.

In our study, the ResNet-18 trained to perform face identity
recognition and the ResNet-18 trained to perform object recog-
nition performed similarly in terms of their correlation with the
neural data. It is possible that this could be because of face-selec-
tive regions encoding domain-general features. Alternatively, if a
ResNet-18 model was trained to perform multiple face tasks,
rather than just a single task, it is possible that this face-specific
model would significantly outperform the object-trained ResNet-
18. This would suggest that face-selective regions do encode do-
main-specific features that support multiple different face tasks.
Our study is not designed to discriminate between the domain-
general view and the generalist view. However, our results are at
least consistent with the generalist view, suggesting that face-
selective regions contribute to both identity and expression recog-
nition. Future studies will need to be implemented to distinguish
between these two alternatives.

Although we did not observe differences between the ventral
and lateral streams in terms of their correlations with identity
and expression DCNNs, comparing the representations learned
by these DCNNs in more detail remains an interesting question
for future research. Methods that localize the regions of an image
that are important for a given classification (Selvaraju et al.,
2017) might offer cues about features that are key for both iden-
tity and expression recognition, and features that might be
uniquely relevant for one of the two tasks.

Last, iEEG is a correlational method. Therefore, we are unable
to demonstrate that representations recorded by lateral electro-
des causally contribute to identity recognition, or that represen-
tations recorded by ventral electrodes causally contribute to
expression recognition. Studies using causal methods (e.g., TMS;
Pitcher et al., 2007) will be needed to establish the causal involve-
ment of these representations for face perception. Even consider-
ing these limitations, the findings challenge the view for which
lateral regions are specialized for expression recognition while
ventral regions are specialized for identity and converge with
recent evidence to suggest that face identity and facial expres-
sions share common neural substrates.
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